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Problem 26. Chemical Kinetics  

The decomposition reaction of a compound A2B proceeds with the chemical equation 

2𝐴2𝐵   
𝑘
→  2𝐴2 + 𝐵2 

and the reaction rate equation follows 𝑟 = 𝑘𝑐𝐴2𝐵
2 . The kinetic data of the system is given in the table below: 

Temperature (K) 967 967 1030 1030 

Initial concentration of 

A2B (mmol dm–3) 
156 39 7 49 

First half-life of A2B (s) 380 1520 1442 206 

26-1 Calculate the activation energy 𝐸𝐴, and the reaction rate constant 𝑘 at both 967 K and 1030 K. 

The reaction is of second order with respect to A2B, and the rate law is 

𝑑𝑐𝐴2𝐵

𝑑𝑡
= −2𝑟 = −2𝑘𝑐𝐴2𝐵

2  . 

After integration, it yields 

1

𝑐𝐴2𝐵(𝑡)
−

1

𝑐𝐴2𝐵(0)
= 2𝑘𝑡 , 

and by imposing the half-life condition 𝑐𝐴2𝐵(𝑡𝑑) = 𝑐𝐴2𝐵(0)/2 it yields the kinetic constant 𝑘 as 

𝑘 =
1

2𝑐𝐴2𝐵(0)𝑡𝑑
 . 

The values of 𝑘 are taken as the mean between the two experiments at the same temperature, yielding for 967 

K, with all units being mmol dm–3 s–1 

𝑘(967 𝐾) =
𝑘1 + 𝑘2
2

=  8.43 × 10−6 , 𝑘1 =  8.43 × 10
−6 , 𝑘2 = 8.43 × 10

−6 , 

while yielding for 1030 K, with all units being mmol dm–3 s–1 

𝑘(1030 𝐾) =
𝑘1 + 𝑘2
2

=  4.95 × 10−5 , 𝑘1 = 4.95 × 10
−5 , 𝑘2 = 4.95 × 10

−5 . 

The activation energy is obtained from the classic Arrhenius form of the kinetic constant, and it is thus assumed 

as being independent from the temperature. 

Taking the ratio of the kinetic constants at two temperatures the pre-exponential factor simplifies, yielding 

𝑘(967 𝐾)

𝑘(1030 𝐾)
= 𝑒

−
𝐸𝐴
𝑅
(
1

967 𝐾
−

1
1030 𝐾

)
 , 

thus 

𝐸𝐴 = 𝑅
ln
𝑘(967 𝐾)
𝑘(1030 𝐾)
1

1030 𝐾 −
1

967 𝐾

= 232.7 𝑘𝐽 𝑚𝑜𝑙−1 . 
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26-2 If the initial concentration of A2B at 1030 K is 54 mmol dm−3, calculate the time taken for the conversion 

rate of A2B to reach 37%. 

The conversion rate is defined as the ratio of the depleted reactant with respect to the initial reactant, usually 

in a molar basis or molar concentration basis  

𝜉 =
𝑐𝐴2𝐵(0) − 𝑐𝐴2𝐵(𝑡)

𝑐𝐴2𝐵(0)
 . 

Thus, from the definition 

𝑐𝐴2𝐵(𝑡) = 𝑐𝐴2𝐵(0)(1 − 𝜉) , 

which substituted in the rate law yields 

𝑡 =
1

2𝑐𝐴2𝐵(0)𝑘

𝜉

1 − 𝜉
= 109.8 𝑠 

This value is consistent with the kinetic data, as in the fourth experiment at the specified temperature and with 

a similar initial concentration, the half-life (equivalent to 𝜉 of 50%) is almost double as the calculated time. 

26-3 The reaction, A → C, can occur by two different mechanisms (Fig. 26): 

(a) The reaction 𝐴   
𝑘𝑎
→   𝐶 occurs directly, and the half-life is not related to the initial concentration. At 294 K, 

the half-life is 1000 min, and at 340 K, the time needed for the concentration of A decreases to 1/1024 of the 

original concentration is 0.10 min. 

(b) The reaction proceeds in two steps: 

 

The activation energies for the involved steps are:  

EA,1 = 125.5 kJ mol−1, EA,−1 = 120.3 kJ mol−1, EA,2 = 167.4 kJ mol−1 

Assume that the pre-exponential factors of these two mechanisms are the same, and both of the activation 

energies and the pre-exponential factors do not change with temperature. Calculate the ratio between the rates 

of the two mechanisms, 𝑟𝐵/𝑟𝐴, at 500 K. 
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The mechanism (a) is of first order in A, as it is the only reaction order with half-life that is independent from 

the initial concentration, thus the rate law is 

𝑟𝐴 =
𝑑𝑐𝐴
𝑑𝑡
= −𝑘𝑎𝑐𝐴 . 

After integration, it yields 

ln
𝑐𝐴(0)

𝑐𝐴(𝑡)
= 𝑘𝑎𝑡 , 

and by imposing the half-life condition 𝑐𝐴(𝑡𝑑) = 𝑐𝐴(0)/2 it yields the kinetic constant 𝑘𝑎 as 

𝑘𝑎(294 𝐾) =
ln 2

𝑡𝑑
= 6.93 × 10−4 𝑚𝑖𝑛−1 . 

For the second case, the time needed is obtained by setting 𝑐𝐴(𝑡) = 𝑐𝐴(0)/1024, thus 

𝑘𝑎(340 𝐾) =
ln 1024

𝑡
= 6.93 × 102 𝑚𝑖𝑛−1 . 

Taking the ratio of the kinetic constants at two temperatures the pre-exponential factor simplifies, yielding 

𝑘𝑎(294 𝐾)

𝑘𝑎(340 𝐾)
= 𝑒

−
𝐸𝐴
𝑅
(
1

294 𝐾
−

1
340 𝐾

)
 , 

thus 

𝐸𝐴 = 𝑅
ln
𝑘𝑎(294 𝐾)
𝑘𝑎(340 𝐾)
1

340 𝐾 −
1

294 𝐾

= 249.6 𝑘𝐽 𝑚𝑜𝑙−1 . 

This value is consistent with the plots of Fig. 26, as the activation energy for mechanism (a) is roughly double 

the activation energies for mechanism (b).  

The mechanism (b) is complex, with rate laws 

𝑟𝐵 =
𝑑𝑐𝐴
𝑑𝑡
= −𝑘1𝑐𝐴 + 𝑘−1𝑐𝐴∗ 

𝑑𝑐𝐴∗
𝑑𝑡

= 𝑘1𝑐𝐴 − 𝑘−1𝑐𝐴∗ − 𝑘2𝑐𝐴∗ 

Assuming the pseudo-steady state condition on the intermediate A*, it is possible to estimate its concentration 

on the basis that its formation (𝑘1𝑐𝐴) and depletion rates (𝑘−1𝑐𝐴∗ + 𝑘2𝑐𝐴∗) balance each other:  

𝑑𝑐𝐴∗
𝑑𝑡

= 0   →   𝑐𝐴∗ = 𝑐𝐴
𝑘1

𝑘−1 + 𝑘2
 , 

thus 

𝑟𝐵 =
𝑑𝑐𝐴
𝑑𝑡
= −

𝑘1𝑘2
𝑘−1 + 𝑘2

𝑐𝐴 . 

Then, from the equal pre-exponential assumption, the ratio 𝑟𝐵/𝑟𝐴 becomes 

𝑟𝐵
𝑟𝐴
=
1

𝑘𝑎

𝑘1𝑘2
𝑘−1 + 𝑘2

=
1

𝑒−𝐸𝐴/𝑅𝑇
𝑒−𝐸𝐴,1/𝑅𝑇𝑒−𝐸𝐴,2/𝑅𝑇

𝑒−𝐸𝐴,−1/𝑅𝑇 + 𝑒−𝐸𝐴,2/𝑅𝑇
=

𝑒−(𝐸𝐴,1+𝐸𝐴,2−𝐸𝐴)/𝑅𝑇

𝑒−𝐸𝐴,−1/𝑅𝑇 + 𝑒−𝐸𝐴,2/𝑅𝑇
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yielding 𝑟𝐵/𝑟𝐴 = 0.512 for 500 K.  

The ratio (also called “branching ratio”) slightly decreases with increasing temperature, suggesting that the 

reaction rate from mechanism (b) is actually lower (almost half) than the reaction rate from mechanism (a). 

This is due to the intermediate effect, as with increasing temperature it can be shown that 𝑘𝑎 is slightly lower 

than 𝑘1, 𝑘−1 and 𝑘2 which take an almost equal value 𝑘, yielding 

𝑟𝐵 = −
𝑘

2
𝑐𝐴 

which is almost half from 𝑟𝐴 = −𝑘𝑎𝑐𝐴. This also shows consistency with the value of 𝑟𝐵/𝑟𝐴 ≈ 1/2 at 500 K. 


