Problem 5. Ultrafast reactions

The rate of true neutralization reactions has proved to be immeasurably fast.
Eucken’s Lehrbuch der Chemischen Physik, 1949

The main problem with studying ultrafast reactions is mixing the reactants. A smart way to
circumvent this problem is the so-called relaxation technique.

Neutralization is a good example of an ultrafast reaction:
k1

H* + OH H20
k2
Here, k: and k2 are the rate constants for the forward and backward reaction, respectively. The
mean enthalpy for this reaction is —49.65 kJ mol ' in the temperature range 298-373 K. The
density of water is 1.000 g cm™.
[IT;0]

[H*][OH]
the neutralization reaction shown above. Calculate also the entropy change for the reaction.

5.1 Water has pH = 7.00 at 298 K. Calculate the apparent equilibrium constant K = of

The equilibrium constant is expressed as the dimensionless quantity:

[H,0]
_ 1M
K= 1om7]
1M 1M
as all the terms are activities, for which the reference molar concentration is set to 1 M. We have
the molar concentration of H,O given by the density:

1000 g/L
[H,0] = PH,0 g/

= = = 5550 M
MMy,o 18.016 g/mol

The molar concentration of H” is given by the pH value,while the molar concentration of OH™ is
given by the charge balance:

[Ht]=10PPM=1%x10""M - [OH ]=[H*]=1x10""M
All the concentrations are known, so the apparent equilibrium constant becomes:

55,50 M

_ 1M _ 15
K= 1x10~’M 1x10~’M =5.55%10

1M 1M

The entropy change of the reaction is known from the thermodynamic definition of equilibrium
constant and Gibbs' free energy change. We have, from the equilibrium constant definition:

A,.g°(T) = —RTlogK = —8.3144]/(mol K) - 298 K - log(5.55 x 10%) = —89.82 k] /mol
and from the definition of the Gibbs’ free energy of reaction:
A,.g°(T) = Ah® — TA,s°

Ah® — Arg°(T)  40.17 k] /mol
T 298K

A,s° = = 0.135 kJ /(mol K)




5.2 Estimate the pH of boiling water (T = 373 K).

The pH is related to the molar concentration of H*, which can be obtained from the equilibrium
constant at 373 K. The Gibbs’ free energy change of the reaction at 373 K is obtained from the
thermodynamic definition. We know that A,.h° and A,.s® are mean values over a temperature
range, and since the required temperature is inside such range, we consider both values as
constant.

We have, from the Gibbs’ free energy change definition:
A.g°(T) = Ah° — TA,s°
A,g°(373 K) = —49.65 kJ/mol — 373 K - 0.135 k] /(mol K) = —99.93 k] /mol
and the equilibrium constant:

—9.993 x 104]/mol
8.3144]/(mol K) - 373K

K373 K) = exp <— > =9.86 x 1013

The molar concentration of H'is equal to the molar concentration of OH™ from the charge balance,
and itis obtained from the equilibrium constant expression in part 5.1 (as the standard
concentration of 1 M has been omitted) as follows:

_ [H,0] +y  [H;0] . ([H,0]\"?
wrwm W o “”‘( )

and the molar concentration of H,O is set equal t055.50 M. Then, the molar concentration of H*
and the respective pH value is obtained:

55.50 \/?

[H+] = (W) =750x10""M - pH = —loglo[H*'] =6.12

Heavy water undergoes an analogous neutralization reaction, yet it is less dissociated than light
water at the given temperature: K,(D-0) = 1.35 x 107"° at 298 K.

k4
D"‘ + OD' —_— Dzo
k2

5.3 Whatis pD of heavy water at 298 K?

From the Ky, which is defined only to include the molar concentrations of D* and OD™~, we have:
Ky, (D,0) = [D*][OD"] = 1.35 x 10715
The molar concentration of D" is equal to the molar concentration of OD™ from the charge balance:
[0D~] = [D¥]
thus, the Ky relation is an equation the only unknown [D*] which is obtained as:
Kw(D20) = [D*]? >  [D*] = (Kw(D,0))"? = (1.35 x 10715)1/2 = 3,67 x 10-8M
The pD value is then obtained from the definition:

pD = —log,,[D*] = 7.43




5.4 \Write the rate law for the change of the concentration of D20 in terms of the concentrations
of D*, OD™ and D-O.

The rate law for the D,O molar concentration change is expressed as the net of the direct and
inverse reaction rates, as follows:
d[D,0]

= Riny = k;[D¥][0D™] — k,[D,0]

The composition of the equilibrium system depends on temperature. If we apply an external
stimulus, for example a very fast heat pulse on the system, we disturb the equilibrium and observe
a subsequent relaxation to the equilibrium composition. We can describe the relaxation with
a new quantity x, a deviation from the equilibrium concentrations:

X = [Dzo]eq —[D,0] = [0D7] — [OD_]eq = [D+] - [D+]eq

5.5 Express the time change % in terms of x. Give both the exact equation and the equation

in which you neglect the small terms of x2.

From the definition of the equilibrium deviationx, we have a set of relations that link the actual
molar concentrations with respect to their equilibrium value:

[D,0] = [D;0]¢q — x
[D*] = x + [D¥]eq
[OD7] = x + [0D7],q4
and after substitutingin the reaction rate expression in 5.4 we obtain:

d([D;0]¢q — x)
dt

= kl(x + [D+]eq)(x + [OD_]eq) - kz([DzO]eq - x)
Since the equilibrium concentration of any specie does not change with time, we have:

d([DZO]eq - x) _ d[D20]¢q _d_x = _d_x
dt dt dt dt

and we can obtain the exact equation:

dx

E = —kl(x + [D+]eq)(x + [OD_]eq) + kZ([DZO]eq - x)

Expanding the first term in the right-hand side, and neglecting the x? terms, we have:

dx
E = _x(kl [D+]eq + kl [OD_]eq + kz) - kl [OD_]eq [D+]eq + kZ [DZO]eq
From the equilibrium constant definition (as the standard concentration of 1 M has been omitted),

we have the following relation:

_ E _ [Dzo]eq

K= k,  [0D7]gq[D*]eq

ky [OD_]eq [D+]eq =k [Dzo]eq

so, the last two terms cancel out, leaving the following:




dx
E = _x(kl [D+]eq + kl [OD_]eq + kz)

Solving the equation derived in 5.5, we get:
x = x(0) x exp(—t x (k1 [D¥]oq + k1 [OD7 1oy + k2))
where x(0) is the deviation from equilibrium at the moment of perturbation.

5.6 For heavy water at 298 K, the relaxation time t (time at which the deviation from equilibrium
drops to % of the initial value) was measured to be 162 ps. Calculate the rate constant for

the forward and backward reaction. The density of heavy water is p = 1.107 g cm™ and
molar mass is M = 20.03.

The definition of relaxation time 7 implies that:

x(1) = %0) = x(0)exp (—1)

so, we substitute the equilibrium change solution and we obtain a direct relation between the rate
constants and t:

x(0) exp (— (ks [D*]eq + k1 [0D Teq + k) ) = 2(0)exp (1)
T(k1[D¥]eq + k1[0D7]oq + kz) = 1

From the charge balance we have [D*]., = [0D7]
into:

eq» therefore the above expression simplifies

. 1
Zkl[D ]eq + kz = ;

also, from the equilibrium constant definition (now as dimensional, without the standard
concentration of 1 M) we have k,; = k,K, where K is the apparent equilibrium constant. We remark
that K must not be confused with the autoionization constantKy, (D,0), as this relation holds:

[Dzo]eq _ [DZO]eq

K= [OD_]eq [D+]eq - KW(DZO)

The equilibrium concentration of D,O is known from the density:

D,0],. = Pp,o _ 1107g/L
27717 MMp,o  20.03 g/mol

=55.27M

Thus, the dimensional equilibrium constant becomes:

[D,0l;  55.27M

Ky (D,0) 1.35x 10715M?2 4,09 x 101°M

and the main relation between the rate constants reduces to one equation in one unknown, the
backward rate constantk,:

1
"7 (2K[D*q + 1)

+ 1 + 1
2k1[D ]eq+k2 :; d Zsz[D ]eq+k2 :; 4 kz

We know [D*],, at 298 K from the pD calculation in 5.3, that is [D*],, = 3.67 X 10~8M.Thus, we
have thebackward rate constant;




1
162X 10"%s-(2-4.09 x 1016M-1-3.67 x 10~8M + 1)

k, =2.06x107%s71

and the forward rate constant is obtained from the dimensional equilibrium constant definition:

ky = k,K =2.06x107%s71.4,09 x 101*M~1 =842 x 101°M~1s71

Ultrafast reactions can also be triggered by a pH jump. Using an ultrafast laser pulse, we can
induce a pH jump in a system with so-called photoacids. These compounds have dramatically
different acid-base properties in the ground and excited electronic states. For example, the pKa
of 6-hydroxynaphthalene-2-sulfonate is 9.12 in the ground state and 1.66 in the excited state.

%0 Q0

e — %
HO O

57 1 cm®of 5.0 x 10~ mol dm= 6-hydroxynaphthalene-2-sulfonate solution was irradiated by
light with the wavelength of 297 nm. The total absorbed energy was 2.228 x 107 J.
Calculate the pH before and after irradiation. Neglect the autoprotolysis of water in both
cases.

Note that the standard state for a solution is defined as ¢, = 1 mol dm™ and assume that

the activity coefficient is yi = 1 for all species. It may be of advantage to use an online cubic
equation solver.

We name the 6-hydroxynaphtalene-2-sulfonate ion as HA, and the dissociation reaction is treated
in the standard form HA — H" + A", We may split the problem by evaluating the pH before, during
and after irradiation.

eThe pH before irradiation(Bl) is given by the dissociation constant:

[H* 15 [A7] 5

KA_BI = [HA]BI KA,BI = 107PKaBr = 10~912 = 7.59 x 10~10

From the charge balance, [A~]g; = [H*]g; = x, and the equilibrium concentration of the acid is
given as the difference between the initial and reacted amount:

[HA]g, = [HA]p —x = 5.0 X 1073M — x

Since K, p; is very small compared to [HA], we can neglect the x contribution to [HA],, or that the
equilibrium concentration of HA is approximately equal to its initial value. This leads to a simplified
guadratic equation, which gives:

2
X
= 5 [H'1g = (Kam[HAL)"? = (7.59 x 10719 - 5.0 x 1073)1/2 = 1.95 x 10~°M

K
A58 THAT,
then, from the pH definition we have:
pHp; = —logo[H*]p, = 5.71

eThe pH during irradiation (DI) is given not only from the modified dissociation constant, but also
from the already existing contribution of [H*]5,;. We have the new constant:

[H*]p/[A7]ps

KA,DI = [HA]DI KA,DI = 10_pKA'DI = 10_1'66 =219 x 10_2




and new values for the molar concentration of involved species, which are now related to the new
reacted amount y, as follows:

[H*]p; = [H*]p +y
[A7]p; = [H*]p; = [H*]p +y
[HA]p; = [HA]g; —y = [HA]p — ¥

We notice that no additional simplifications may be done, since K, p; is comparable to [HA],, and
thus leading to a quadratic equation:

([H*]p + ¥)?

Kapr = v+ y(KA,DI + 2[H+]BI) + ([H+]é1 - KA,DI[HA]O) =0
[HA]p —y

as the quadratic’s coefficientsare a = 1, b = 2.19 x 1072 and ¢ = —1.095 x 10~*, which leads to
only one positive solution:
y =419 x1073M
[H*]p; = [H¥]g +y = 419 x 1073M
[HA]p; = [HA], —y = 8.10 X 10™*M
then, from the pH definition we have:
pHp; = —logo[H*]p, = 2.38

e The pH after irradiation (Al)is given from the original dissociation constantK, 4; = K, 5;, and the
not negligible contribution of [H*],;. The new values for the molar concentration of involved
species, which are now related to the new reacted amount z, are listed as follows:

[H*]a = [H]p; — 2
[A™]a = [H g = [H*]p; — 2
[HA]4; = [HA]p,; + z

Since K, ; is very small compared to [HA]p; we can neglect the z contribution to [HA] 4, or that the
equilibrium concentration of HA is approximately equal to its value during irradiation. This leads to
a simplified quadratic equation, which gives the reacted amount:

([H+]D1 - Z)Z
[HA]p,

1/2

Kyp; = - Z= [H+]D1 - (KA,BI[HA]DI)

The H™ molar concentration is then obtained:

[H*1, = [H¥]p — z = (K g [HALp;)"? = (7.59 x 10710 - 8.10 x 10™*M)Y/2 = 7.84 x 10~'M
then, from the pH definition we have:

pHpp = —log;o[H*] 4 = 6.11
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