Problem 5. The Second Law of thermodynamics applied to a chemical reaction

Consider a system, a chemical reactor in Fig. 1. Pressure p and temperature T inside the reactor are kept constant. There is no transfer of matter into or out of the system.

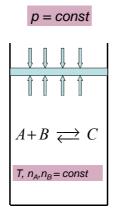


Fig. 1. Chemical reaction inside a reactor

According to the Second Law, every spontaneous process in such a reactor leads to the decrease of the Gibbs free energy, G_{system} , i.e. $\Delta G_{system} < 0$.

If the chemical reaction, e.g.,
$$A + B = C(a)$$
, is the only process inside the reactor

$$\Delta G_{\text{System}} = \Delta G_{\text{Reaction}}(a)\Delta\xi(a)$$

$$\Delta\xi(a) = \Delta n_{c} = -\Delta n_{A} = -\Delta n_{B}$$
(1)

where $\Delta G_{Reaction}$ and $\Delta \xi$ are the Gibbs free energy and the extent of reaction (a), respectively, Δn_A , Δn_B , Δn_C are changes of the numbers of moles of A, B, C in the reaction (a).

-- Question 1.1. Relate $\Delta \xi$ to Δn_i of reactants and products of the following reaction

$$\frac{1}{6}C_6H_{12}O_6 + O_2 = CO_2 + H_2O$$
(b)

-- Question 1.2. Prove that, according to the Second Law, $\Delta G_{Reaction} < 0$ for any single spontaneous chemical reaction in the reactor (Fig.1).

Answer 1.1

Answer 1.1 Considering the chemical reaction: $\frac{1}{6}C_6H_{12}O_6 + O_2 = CO_2 + H_2O$ $\Delta x = \Delta n_{CO_2} = \Delta n_{H_2O} = -\Delta n_{O_2} = -6 \cdot \Delta n_{C_6H_{12}O_6}$

Answer 1.2

According to the Second Law, for every spontaneous chemical process $\Delta G_{\text{system}} < 0$, in which $\Delta G_{\text{system}} = \Delta G_{\text{reaction}} \cdot \Delta \xi$ so $\Delta G_{\text{reaction}} \cdot \Delta \xi < 0$ since in a spontaneous chemical process $\Delta \xi > 0$ (reagents \rightarrow products; $\Delta n_{reagent} < 0$ and $\Delta n_{product} > 0$) $\Delta G_{\text{reaction}}$ must be negative ($\Delta G_{\text{reaction}} < 0$)

-- Question 2. The Gibbs free energy of the chemical reaction (a) is:

$$\Delta G_{\text{Reaction}} = \Delta G_{\text{Reaction}}^{\mathbf{0}} + RT \ln \frac{[C]}{[A][B]} < 0$$
⁽²⁾

where [C], [A], [B] are time variant concentrations inside the reactor in the course of spontaneous reaction. Using the law of mass action, relate $DG_{Reaction}$ to the ratio of rates of forward r_1 and reverse r_{-1} reaction (a). Consider both reactions as elementary ones.

Answer 2

We can affirm that:
$$r_1 = k_1 [A][B] \Rightarrow \frac{r_1}{k_1} = [A][B]$$
 and $r_{-1} = k_{-1} [C] \Rightarrow \frac{r_{-1}}{k_{-1}} = [C]$
replacing in the given equation of the Gibbs free energy we obtain:
 $\Delta G_{reaction} = \Delta G_{reaction}^0 + R T \ln \frac{[C][D]}{[A][B]} = \Delta G_{reaction}^0 + R T \ln \frac{r_{-1} \cdot k_1}{r_1 \cdot k_{-1}}$
at equilibrium state $\Delta G_{reaction} = 0$ and $r_1 = r_{-1}$
replacing in the given equation of the Gibbs free energy we obtain:

 $0 = \Delta G_{reaction}^{0} + R T \ln \frac{\mathbf{r}_{1} \cdot \mathbf{k}_{1}}{\mathbf{r}_{1} \cdot \mathbf{k}_{-1}} \implies \Delta G_{reaction}^{0} = -R T \ln \frac{\mathbf{r}_{-1} \cdot \mathbf{k}_{1}}{\mathbf{r}_{1} \cdot \mathbf{k}_{-1}} = -R T \ln \frac{\mathbf{k}_{1}}{\mathbf{k}_{-1}}$

so we can write: $\Delta G_{reaction} = -R T \ln \frac{k_1}{k_{-1}} + R T \ln \frac{r_{-1} \cdot k_1}{r_1 \cdot k_{-1}} = R T \left(\ln \frac{r_{-1} \cdot k_1}{r_1 \cdot k_{-1}} - \ln \frac{k_1}{k_{-1}} \right) = R T \ln \frac{r_{-1}}{r_1}$

-- Question 3.1. Derive the expression (2) for $DG_{reaction}$ of the following chemical transformations: (a') $H_2(g) + Br_2(g) = 2HBr(g)$

- $\begin{array}{ll} (a') & H_2(g) + Br_2(g) = 2HBr(g) \\ (a'') & H(g) + Br_2(g) = Br(g) + HBr(g) \end{array}$
- $\begin{array}{ll} (a'') & H(g) + D_{2}(g) = D_{1}(g) + HD_{1}(g) \\ (a''') & CaCO_{3}(s) = CaO(s) + CO_{2}(g) \end{array}$

-- Question 3.2. For which of these reactions the relation between $DG_{Reaction}$ and r_1 , r_{-1} derived in Problem 2 is valid?

Answer 3.1

(a') For the reaction
$$H_2(g) + Br_2(g) = 2HBr(g)$$

 $r_1 = k_1 [H_2][Br_2] \Rightarrow \frac{r_1}{k_1} = [H_2][Br_2] \text{ and } r_{-1} = k_{-1} [HBr]^2 \Rightarrow \frac{r_{-1}}{k_{-1}} = [HBr]^2$
 $\Delta G_{reaction} = \Delta G_{reaction}^0 + R T \ln \frac{[HBr]^2}{[H_2][Br_2]} = \Delta G_{reaction}^0 + R T \ln \frac{r_{-1} \cdot k_1}{r_1 \cdot k_{-1}} \text{ and } \Delta G_{reaction}^0 = -R T \ln \frac{k_1}{k_{-1}}$
so we can write $\Delta G_{reaction} = R T \ln \frac{r_{-1}}{r_1}$
(a'') For the reaction $H(g) + Br_2(g) = Br(g) + HBr(g)$
 $r_1 = k_1 [H][Br_2] \Rightarrow \frac{r_1}{k_1} = [H][Br_2] \text{ and } r_{-1} = k_{-1} [Br][HB] \Rightarrow \frac{r_{-1}}{k_{-1}} = [Br][HB]$
 $\Delta G_{reaction} = \Delta G_{reaction}^0 + R T \ln \frac{[Br][HBr]}{[H][Br_2]} = \Delta G_{reaction}^0 + R T \ln \frac{r_{-1} \cdot k_1}{r_1 \cdot k_{-1}} \text{ and } \Delta G_{reaction}^0 = -R T \ln \frac{k_1}{k_{-1}}$
so we can write $\Delta G_{reaction} = R T \ln \frac{r_{-1}}{r_1}$
(a''') For the reaction $CaCO_3(s) = CaO(s) + CO_2(g)$
 $r_1 = k_1$ and $r_{-1} = k_{-1} [CO_2] \Rightarrow \frac{r_{-1}}{k_{-1}} = [CO_2]$

Answer 3.2

The relation obtained in Answer 2 is valid only for (a') and (a'').

In (a''') there is an heterogeneous equilibrium where $CaCO_3$ and CaO are solids (the activity of pure solid = 1)

-- Question 4. The observed rate of chemical reaction, r_{obs} , is defined as $r_{obs} = r_1 - r_{-1}$. Let reaction (a) proceed spontaneously. At a certain moment

 $r_{obs} / r_1 = 0.5$, [A] = 0.5 M, [B] = 1 M, [C] = 2 M. Find the equilibrium constant, K, of the reaction (a), T = 298 K.

Answer 4

The observed rate is $r_{obs} = r_1 - r_{-1}$ and from the problem's data $\frac{r_{obs}}{r_1} = 0.5$

elaborating: $\frac{\mathbf{r}_{obs}}{\mathbf{r}_{1}} = \frac{\mathbf{r}_{1} - \mathbf{r}_{.1}}{\mathbf{r}_{1}} = \frac{\mathbf{r}_{1}}{\mathbf{r}_{1}} - \frac{\mathbf{r}_{.1}}{\mathbf{r}_{1}} = 1 - \frac{\mathbf{r}_{.1}}{\mathbf{r}_{1}} \iff 0,5 = 1 - \frac{\mathbf{r}_{.1}}{\mathbf{r}_{1}} \implies \frac{\mathbf{r}_{.1}}{\mathbf{r}_{1}} = 1 - 0,5 = 0,5$ $\mathbf{r}_{.1} \quad \mathbf{k}_{.1}[C] \qquad \mathbf{k}_{1} \quad \mathbf{r}_{1}[C]$

from the definition of the reactions' rate, we can write: $\frac{\mathbf{r}_{-1}}{\mathbf{r}_1} = \frac{\mathbf{k}_{-1}[C]}{\mathbf{k}_1[A][B]} \implies \frac{\mathbf{k}_1}{\mathbf{k}_{-1}} = \frac{\mathbf{r}_1[C]}{\mathbf{r}_{-1}[A][B]}$

Considering that the K_{eq} is given by the ratio of the k:

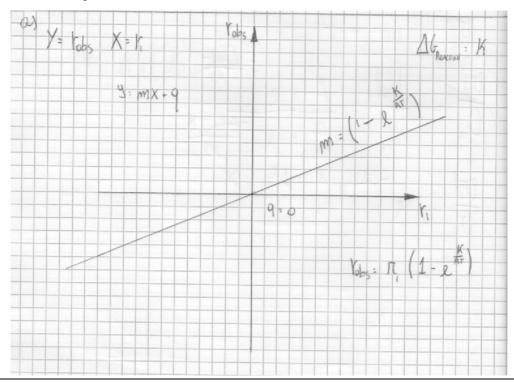
at equilibrium state $\mathbf{r}_{obs} = 0$ so $\mathbf{r}_1 = \mathbf{r}_{-1}$ by the law of mass action $K_{eq} = \left(\frac{[\mathbf{C}]}{[\mathbf{A}] \cdot [\mathbf{B}]}\right)_{eq} = \frac{\mathbf{r}_{-1} \cdot k_1}{\mathbf{r}_{-1} \cdot k_{-1}} = \frac{\mathbf{k}_1}{\mathbf{k}_{-1}}$

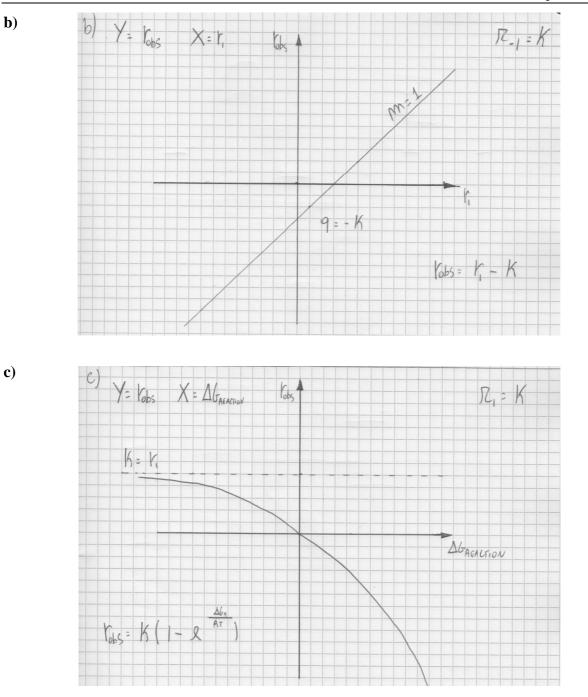
from the data of the problem we know that [A] = 0,5; [B] = 1; [C] = 2 and we get $\frac{r_1}{r_1} = \frac{1}{0,5} = 2$

finally we can find:
$$K_{eq} = \left(\frac{[C]}{[A] \cdot [B]}\right)_{eq} = \frac{k_1}{k_{-1}} = \frac{r_1[C]}{r_{-1}[A][B]} = \frac{r_1}{r_{-1}} \frac{[C]}{[A][B]} = 2 \cdot \frac{2}{0.5 \cdot 1} = 8$$

-- Question 5. Plot r_{obs} as a function of a) r_1 , at $DG_{Reaction} = const;$ b) r_1 , at $r_{-1} = const;$ c) $DG_{Reaction}$, at $r_1 = const.$

Answer 5 Elaborating data we obtain:





-- Question 6. Which thermodynamic and kinetic parameters of a chemical reaction are influenced by a catalyst? Put plus (+) into the cell of the Table if a catalyst may cause a change of the corresponding parameter, (-) otherwise.

Answer 6

Table

r	r ₁	r ₁ /r ₋₁	$\Delta G_{reaction}$	r/r.1
+	+	-	-	-

Solution proposed by Roberto Tinelli – Student – ITIS "L. dell'Erba" – Castellana Grotte – Italy