Problema 18 Iodine equilibrium

- a) Nell'equilibrio omogeneo lo ione ioduro Γ si comporta da base di Lewis cedendo una coppia di elettroni allo iodio molecolare I_2 che quindi ha carattere di acido di Lewis.
- **b)** $I_2 + 2 S_2 O_3^{2-} \rightarrow 2 \Gamma + 2 S_4 O_6^{2-}$ (I_2 si riduce a Γ e funge da ossidante) $I_3^- + 2 S_2 O_3^{2-} \rightarrow 3 \Gamma + 2 S_4 O_6^{2-}$ (I_3^- si riduce a Γ e funge da ossidante)

Gli atomi di zolfo in $S_2O_3^{2-}$ hanno numero di ossidazione +2.

Gli atomi di zolfo in $S_4O_6^{2-}$ hanno in media numero di ossidazione +2,5 : +5 i due atomi di zolfo legati agli ossigeni e 0 gli altri due atomi legati con altri atomi di zolfo.

c) Dalla legge di Beer $A = \varepsilon$ b C, nota l'assorbanza (A), il coefficiente di estinzione molare (ε) e il cammino ottico (b), si ottiene una concentrazione di I_2 nei 100 mL di soluzione in CH_2Cl_2 pari a 5,97 ·10⁻⁴ M ovvero un numero di moli pari a 5,97 ·10⁻⁵ mol.

Queste moli sono quelle contenute nei 5 mL di fase organica estratta, per cui la concentrazione di I_2 in CH_2Cl_2 :

$$[I_2]_{(org)} = (5.97 \cdot 10^{-5} \text{ mol}) / (5 \cdot 10^{-3} \text{ L}) = 0.012 \text{ M}$$

La concentrazione di I2 nella soluzione acquosa è :

$$[I_2]_{(acq)} = [I_2]_{(org)} / K_d$$
 $[I_2]_{(acq)} = 5.97 \cdot 10^{-5} \text{ M} / 150$ $[I_2]_{(acq)} = 7.96 \cdot 10^{-5} \text{ M}.$

d) Le moli di $S_2O_3^{2-}$ richieste per ridurre I_2 e I_3^- sono: $n=3,1\cdot 10^{-3}$ L \cdot 0,01 mol/L = $3,1\cdot 10^{-5}$ mol. Dato il rapporto stechiometrico di entrambe le reazioni, le moli totali di I_2 e I_3^- sono la metà di quelle di $S_2O_3^{2-}$ ovvero $1,55\cdot 10^{-5}$ mol.

Sapendo che $[I_2]_{(acq)} = 7.96 \cdot 10^{-5} \, \text{M}$ e che abbiamo prelevato un'aliquota da 25 mL della soluzione acquosa, le moli di I_2 sono $1.99 \cdot 10^{-6}$ (basta fare M·V); sottraendo alle moli totali di I_2 e I_3^- quelle di I_2 si ottengono le moli di I_3^- : $1.35 \cdot 10^{-5}$ mol.

Le moli di Γ nell'intera soluzione acquosa sono $50 \cdot 10^{-3}$ L \cdot 0,01 M = $5 \cdot 10^{-4}$ mol.

Nell'aliquota da 25 mL saranno la metà ovvero 2,5 ·10⁻⁴ mol.

Di queste $1,35 \cdot 10^{-5}$ mol sono state impiegate nella formazione di I_3^- per cui quelle che restano in soluzione si ottengono per sottrazione $(2,36 \cdot 10^{-4} \text{ mol})$.

Le concentrazioni delle specie si ottengono dividendo per il volume di 25 mL:

$$[I_2]_{(acq)} = 7,96 \cdot 10^{-5} M$$

 $[I_3^-]_{(acq)} = 5,40 \cdot 10^{-4} M$
 $[\Gamma]_{(acq)} = 9,44 \cdot 10^{-3} M$

La costante dell'equilibrio omogeneo è:

$$K_e = [I_3^-] / ([I^-] [I_2]) = 719,2$$

e) Calcolare $\Delta_f G^{\circ}(I_{2 \text{ org}})$ sapendo che $\Delta_f G^{\circ}(I_{2 \text{ acq}}) = 16,4 \text{ kJ/mol}.$

Per l'equilibrio

$$I_{2(acq)} \rightarrow I_{2(org)}$$

la variazione di energia libera della reazione vale:

$$\Delta G^{\circ} = \Delta_f G^{\circ}(I_{2 \text{ org}})$$
 - $\Delta_f G^{\circ}(I_{2 \text{ acq}})$ = - RT lnK_d

Sostituendo
$$\Delta_f G^{\circ}(I_{2 \text{ acq}}) = 16,4 \text{ kJ/mol}, R = 8,31 \cdot 10^{-3} \text{ kJ/(mol} \cdot \text{K)}, T = 298 \text{ K e } \text{K}_d = 150 \text{ si ottiene:}$$
 $\Delta_f G^{\circ}(I_{2 \text{ org}}) = 4 \text{ kJ/mol}$

Soluzione proposta da

Valerio Fasano

ex allievo dell' ITIS "Luigi Dell' Erba" di Castellana Grotte