Fields of Advanced Difficulty

Theoretical

Kinetics: Integrated first order rate equation; analysis of complex reaction mechanisms using the steady state approximation; determination of reaction order and activation energy.

Thermodynamics: Relationship between equilibrium constant, electromotive force and standard Gibbs free energy; the variation of equilibrium constant with temperature.

Quantum Mechanics: Energetics of rotational, vibrational, and electronic transitions using simple model theories.

Molecular Structure and Bonding Theories: The use of Lewis theory, VSEPR theory and hybridization for molecules with coordination number greater than four.

Inorganic Chemistry: Stereochemistry and isomerism in coordination compounds.

Spectroscopy: Interpretation of relatively simple ¹³C- and ¹H-NMR spectra; chemical shifts, multiplicities, coupling constants and integrals.

Practical

Column chromatograpy. Thin layer chromatography.