SYLLABUS OF THE INTERNATIONAL CHEMISTRY OLYMPIAD (2004)

Theoretical part

Level 1: These topics are included in the overwhelming majority of secondary school chemistry programs and need not be mentioned in the preparatory problems.

Level 2: These topics are included in a substantial number of secondary school programs and maybe used without exemplification in the preparatory problems. Level 3: These topics are not included in the majority of secondary school programs and can only be used in the competition if examples are given in the preparatory problems.

1. The atom

1.1.	Introdu	uction	
	1.1.1.	Counting of nucleons	1
	1.1.2.	Isotopes	1
1.2.	The hy	drogen atom	
	1.2.1.	Concept of energy levels	1
	1.2.2.	Shape of s-orbitals	1
	1.2.3.	Shape and orientation of <i>p</i> -orbitals	1
	1.2.4.	Shape and orientation of <i>d</i> -orbitals	3
	1.2.5.	Understanding the simplest Schrodinger equation	3
	1.2.6.	Square of the wave function and probability	3
	1.2.7.	Quantum numbers (n, I, m)	3
1.3.	Radioa	ctivity	
	1.3.1.	51 5	1
	1.3.2.	Radioactive decay	1
	1.3.3.	Nuclear reactions	2
		2. Chemical bonding	
2.1.	VSEPR	 Simple molecular structures with 	
	2.1.1.	no more than four electron pairs about central atom	1
	2.1.2.	with central atom exceeding the "octet rule"	3
2.2.		lization and resonance	3
	Hybrid	orbital theory	3
2.4.	Molecu	lar orbital theory	
	2.4.1.	molecular orbital diagram (H ₂ molecule)	3
	2.4.2.	\mathbf{v}	3
	2.4.3.		3
	2.4.4.	unpaired electrons and paramagnetism	3
		3. Chemical calculations	
	3.1.1.	Balancing equations	1
	3.1.2.		1
	3.1.3.	Mass and volume relations (including density)	1
	3.1.4.	I	1
	3.1.5.	5	1
	3.1.6.	Concentration calculations	1
		4. Periodic trends	
4.1.		n configuration	
	4.1.1.	Pauli exclusion principle	1

4.1.2. Hund's Rule

1

		Main group elements	1
		Transition metal elements	1
		Lanthanide and actinide metals	3
4.2.		egativity	1
	Electror		2 1
4.4.		ization energy	
4.5.	Atomic	SIZE	1
	Ion size		1
4.7.	Hignest	oxidation number	1
		5. Inorganic Chemistry	
5.1.	Introdu		
	5.1.1.	Trends in physical properties of elements (Main groups)	
		5.1.1.1. melting point	1
		5.1.1.2. boiling point	1
		5.1.1.3. metal character	1 3
		5.1.1.4. magnetic properties	3
		5.1.1.5. electrical conductivity	2
	5.1.2.	Oxidation number	1
	5.1.3.	Nomenclature	
		5.1.3.1. main group compounds	1
		5.1.3.2. transition metal compounds	1
- 0	0	5.1.3.3. simple metal complexes	3
5.2.	,		4
		Trend in reactivity of (heavy elements more reactive)	1
	5.2.2.	Products of reaction with	1
		5.2.2.1. water	1
		5.2.2.2. halogens	1 2
	E 2 2	5.2.2.3. oxygen	2
	5.2.3. 5.2.4.	Basicity of oxides Properties of hydrides	и З
	5.2.4. 5.2.5.	Other compounds, properties and oxidation states	з 3
5.3.		13 – 18 and Hydrogen	3
5.5.		Binary molecular compounds of hydrogen	
	5.5.1.	5.3.1.1. Formulae	1
		5.3.1.2. Acid-base properties of CH_4 , NH_3 , H_2O , H_2S	1
		5.3.1.3. Other properties 61644 , 61744 , 61743 , 1126 , 1125	3
	5.3.2.		5
	0.0.2.	Group 13	
		5.3.2.1 The oxidation state of boron and aluminium in their oxides	1
		and chlorides is +3	
		5.3.2.2. The acid-base properties of aluminium oxide/hydroxide	2
		5.3.2.3. Reaction of boron(III) oxide with water	
		5.3.2.4. Reaction of boron(III) chloride with water	3 3
		5.3.2.5. Other compounds, properties and oxidation states	3
	5.3.3.	Group 14	
		5.3.3.1. The oxidation state of Si in its chloride and oxide is $+4$	1
		5.3.3.2. The +2 and +4 oxidation states of carbon, tin and lead,	2
		the acid-base and redox properties of the oxides and	
		chlorides	
		5.3.3.3. Other compounds, properties and oxidation states	3
	5.3.4.	Group 15	
		5.3.4.1. Phosphorus(+5) oxide and chloride, and their reaction	2
		with water	

		F 2 4 2	December (2) evide and oblevide, and their repetier	2
		5.3.4.2.	Phosphorus(+3) oxide and chloride, and their reaction	2
		5.3.4.3.	with water Ovides of pitrogen	
		5.5.4.5.	Oxides of nitrogen a. Reaction of NO to form NO ₂	1
			b. Dimerization of NO_2	1
			c. Reaction of NO_2 with water	1
		5.3.4.4.		1
		5.5.4.4.	a. HNO ₃ and nitrates	1
			b. HNO ₂ and NH ₂ NH ₂	
		5.3.4.5.		3 3 3
			Other compounds, properties and oxidation states	ວ ວ
	5.3.5.	Group 16		3
	5.5.5.	5.3.5.1.		1
		5.3.5.1.	oxides with water, properties of their acids	I
		F 2 F 2	Reaction of thiosulfate anion with I_2	2
		5.3.5.2.	_	3 3
	5.3.6.		Other compounds, properties and oxidation states 7 (Halogens)	ა
	5.5.0.	5.3.6.1.		1
			5 5 2 2	1 1
			Acid-base properties of the hydrogen halides	
			The oxidation state of fluorine in its compounds is -1	1
		5.3.6.4.		1
		5.3.6.5.		2
			Reactions of halogens with water	3 3
			Reaction of Cl_2O and Cl_2O_7 with water	3 3
	E 2 7		Other compounds, properties and oxidation states	3 3
5.4.	5.3.7.	Group 18 on elemer		3
5.4.	5.4.1.			1
	J.4.I.		(+2) oxidation states of common transition metals:	I
		-	(+2), Cr(+3) Mn(+2), Mn(+4), Mn(+7) Ag(+1)	
			(+2), Fe(+3) Co(+2) Zn(+2)	
	E 1 0		(+1), Hg $(+2)$ Cu $(+1)$, Cu $(+2)$ Ni $(+2)$	C
	5.4.2.		of ions listed above in aqueous solution	2 2
	5.4.3.	-	ity of Ag, Hg and Cu in HCl	
	5.4.4. 5.4.5.		ng by dissolution of the other metals in HCl	2 2
	5.4.5.	• • •	and $Zn(OH)_2$ are amphoteric and the other +2	Z
	5.4.6.		ydroxides of the metals listed above are basic nd $Cr_2O_7^{2-}$ are strong oxidants in acid solution	1
	5.4.8. 5.4.7.		ndence of products of MnO_4^- acting as oxidant	1 2
	5.4.7.		version between CrO_4^{2-} and $Cr_2O_7^{2-}$	2
	5.4.9.		mpounds, properties and oxidation states	ა 2
5.5.		nides and a		3 3
5. <i>5</i> .			mistry including stereochemistry	5
5.0.	5.6.1.		n of coordination number	1
	5.6.2.		equations for complexation reactions given all formulae	1
	5.6.3.	•	e of common complex ions	
	5.0.5.		$Ag(NH_3)_2^+$	1
		5632	$Ag(S_2O_3)_2^{3-}$	3
		5633	FeSCN ²⁺	3
			$Cu(NH_3)_4^{2+}$	1
			Other complex ions	3
	5.6.4.		and field theory (<i>eg</i> and <i>t</i> 2g terms, high and low spin)	3
	5.6.5.	• • •		5
	5.0.5.		(6.7) <i>cis</i> and <i>trans</i>	3
			enantiomers	3
		0.0.0.E.		0

5.7.	Selected	d industrial processes	
	5.7.1.	Preparation of H ₂ SO ₄	1
	5.7.2.	Preparation of NH ₃	1
	5.7.3.	Preparation of Na ₂ CO ₃	2
	5.7.4.	Preparation of Cl ₂ and NaOH	1 2 2 2
	5.7.5.	Preparation of HNO ₃	2
		6. Physical chemistry	
6.1.	Gases		
	6.1.1.	Ideal gas law	1
	6.1.2.	van der Waal's gas law	
		definition of partial pressure	3 2 3
		Dalton's Law	3
6.2.	Thermo	dynamics	
	6.2.1.		
		6.2.1.1. Concept of system and surroundings	2
		6.2.1.2. Energy, heat and work	2 2
	6.2.2.	Enthalpy	
		6.2.2.1. Relationship between internal energy and enthalpy	3
		6.2.2.2. Definition of heat capacity	2
		6.2.2.3. Difference between C_p and C_v (ideal gas only)	3
		6.2.2.4. Enthalpy is a state property (Hess's Law)	2
		6.2.2.5. Born-Haber cycle for ionic compounds	3
		6.2.2.6. Use of standard formation enthalpies	2
		6.2.2.7. Enthalpies of solution and solvation	3
		6.2.2.8. Bond enthalpies (definition and use)	3 2 3 2 3 2 3 2 2
	6.2.3.	Second Law (Entropy and Free Energy)	
		6.2.3.1. Entropy definition (dq / T)	3
		6.2.3.2. Entropy and disorder	3 3 3 3 3 3
		6.2.3.3. Entropy definition ($S = k \ln W$)	3
		6.2.3.4. Gibbs energy definition ($\Delta G = \Delta H - T \Delta S$)	3
		6.2.3.5. Using ΔG to predict direction of natural change	3
		6.2.3.6. Relationship between ΔG° and equilibrium constant K	3
6.3.	Equilibri	ium	
	6.3.1.	Acid-base	
		6.3.1.1. Arrhenius definitions of acids and bases	1
		6.3.1.2. Bronsted-Lowry definitions	1
		6.3.1.3. Conjugate acids and bases	1
		6.3.1.4. pH definition	1
		6.3.1.5. K _w definition	1
		6.3.1.6. K_a and K_b as a measure of acid and base strength	1
		6.3.1.7. Acidity or basicity of ions	1
		6.3.1.8. Calculation of pH from pK_a (weak acid)	1
		6.3.1.9. Calculation of pH of a simple buffer solution	2
	6.3.2.	Gas phase	
		6.3.2.1. Equilibrium constant in partial pressures	3
		6.3.2.2. Relating K_p and K_c	3
	6.3.3.	Solubility	
		6.3.3.1. Solubility constant (product) definition (K _{sp})	2
		6.3.3.2. Calculation of solubility in water from K_{sp}	2
	6.3.4.	Compleximetric	
		6.3.4.1. Complex formation constant (definition)	3
		6.3.4.2. Problems involving compleximetric equilibria	3
		6.3.4.3. Lewis acids and bases	3

		6.3.4.4.	Hard and soft Lewis acids and bases	3
	6.3.5.	Phase		
		6.3.5.1.	Temperature dependence of vapour pressure	3
		6.3.5.2.	Clausius-Clapeyron equation	3
		6.3.5.3.	Single component phase diagrams	
			a. triple point	3
			b. critical point	3
		6.3.5.4.	•	
			a. ideal and nonideal systems	3
			b. diagram	
			c. use in fractional distillation	3
		6355	Henry's Law	3
			Raoult's Law	2
			Deviation from Raoult's Law	3 3 3 3 3 3
			Boiling point elevation	J 2
			Freezing point depression	3 3 3 3
				3
			 Osmotic pressure Partition coefficient 	3
				3
	() (. Solvent extraction	3
	6.3.6.	Multiple		2
			Calculation of pH for multiprotic acids	3
	-, ,		Calculation of pH for weak acid mixtures	3
6.4.		hemistry		
			otive force (definition)	1
			electrodes	1
			l electrode potential	1
		Nernst e	•	3
	6.4.5.		kind electrodes	3 3 3
	6.4.6.	Relations	ship between ΔG and electromotive force	3
			emical kinetics (Homogeneous reactions)	
7.1.	Introdu			
	7.1.1.		affecting reaction rate	1
	7.1.2.		coordinates and the basic idea of a transition state	1
7.2.	Rate lav			
			ial rate law	2
	7.2.2.		of reaction order	2
			stant definition	2
	7.2.4.		er reactions	
			Dependence of concentration on time	3
			Concept of half life	3
		7.2.4.3.	Relationship between half life and rate constant	3
		7.2.4.4.		
			a. differential rate law	3
			b. integrated rate law	3
		7.2.4.5.	Rate constant for second and third order reactions	3
7.3.	Reaction	n mechani	isms	
	7.3.1.	Concept	of molecularity	3
	7.3.2.	Rate-det	ermining step	3
	7.3.3.	Basic cor	ncepts of collision theory	
	7.3.4.	Opposing	g parallel and consecutive reactions	3 3 3 3
	7.3.5.	Arrheniu		3
		7.3.5.1.	Definition of activation energy	3
			Calculation of activation energy	3

8.	Spe	ctros	сору

~ 1		a. speciroscopy	
8.1.	UV/visib		-
	8.1.1.	Identification of aromatic compound	3
	8.1.2.	Identification of chromophore	3
		Dyes: colour vs structure	3
	8.1.4.	Beer's Law	3
8.2.	Infrared		
		Interpretation using a table of frequencies	3
	8.2.2.	Recognition of hydrogen bonds	3
8.3.	x-Ray		
	8.3.1.	Bragg's Law	3
	8.3.2.	Concept of	
		8.3.2.1. coordination number	3
		8.3.2.2. unit cell	3
	8.3.3.	Solid structures	
		8.3.3.1. NaCl	3
		8.3.3.2. CsCl	3
		8.3.3.3. metals	3
8.4.	NMR		
	8.4.1.	General Concepts	
		8.4.1.1. chemical shift	3
		8.4.1.2. spin-spin coupling and coupling constants	3
		8.4.1.3. integration	3
	8.4.2.	Interpretation of a simple 1H spectrum (like ethanol)	3 3
	8.4.3.	Identification of <i>o</i> - and <i>p</i> -disubstituted benzene	3
	8.4.4.	Interpretation of simple spectra of 13C (proton decoupled) and	3
		other 1/2 spin nuclei	
8.5.	Mass sp	pectrometry	
		Recognition of molecular ion	3
		Recognition of fragments with the help of a table	3
		Recognition of typical isotope distribution	3
			-
		9. Organic Chemistry	
9.1.	Introduc		
	9.1.1.	(3.1.1) Alkane naming (IUPAC)	1
	9.1.2.	Trends in boiling points of	
		9.1.2.1. (3.1.3) alkanes with structure	1
		9.1.2.2. (3.7.1) alcohols <i>vs</i> ethers due to hydrogen-bonding	1
	9.1.3.	(3.3.1, 3.4.1) Geometry at singly, doubly, and triply bonded can	
	9.1.4.	Identification of common functional groups	1
	9.1.5.	Isomerism of alkenes	
		9.1.5.1. <i>cis-trans</i>	1
		9.1.5.2. <i>E/Z</i>	3
	9.1.6.	Enantiomers	
		9.1.6.1. Optical activity	2
		9.1.6.2. <i>R/S</i> nomenclature	3
9.2.	Reactivi	ity	
	9.2.1.	Alkanes	
		9.2.1.1. reaction with halogens	
		a. products	1
		b. free radical mechanism (initiation, termination)	2
		9.2.1.2. Cycloalkanes	-
		a. names	2
			_

6

		 b. Strain in small rings c. chair/boat conformations of cyclohexane 	3 3
9.2.2.	Alkenes		
		Products from Br_2 , HBr and H_2O/H^+	1
		Markownikoff's rule	2
		Mechanism involving carbocation intermediates	3 3 3
		Relative stability of carbocations 1,4 addition to dienes	ა ვ
9.2.3.	Alkynes	1,4 addition to dienes	5
<i></i>		Acidity relative to alkenes	3
		Differences in chemical properties from alkenes	2
9.2.4.	Benzene	• •	
	9.2.4.1.	formula	1
		stabilization by resonance	1
	9.2.4.3.	electrophilic substitution (nitration, halogenation)	
		a. directing effect of first substituent	3
		b. effect of first substituent on reactivity	3 3 3
		c. explanation of substituent effects	3
9.2.5.	-	compounds	
		Nomenclature of monofunctional	1
	9.2.5.2.	Substitution reactions	2
		a. giving alcohols b. in which halogen is exchanged	3 3
		c. reactivity	3
		i. primary vs secondary vs tertiary	3
		ii. aliphatic <i>vs</i> aromatic	
		d. $S_N 1$ and $S_N 2$ mechanisms	3
	9.2.5.3.	Elimination reactions	3 3 2
	9.2.5.4.	Competition of elimination and substitution	2
9.2.6.	Alcohols		
		Nomenclature of monofunctional	1
		Comparison of acidity of alcohols and phenols	2
	9.2.6.3.	5	1
		Esters with inorganic acid	2
007		Oxidation reactions	1
9.2.7.	5	es and ketones	1
		Nomenclature of monofunctional	1 1
		Oxidation of aldehydes Reduction to alcohols (LiAlH ₄ , NaBH ₄)	3
		Keto/enol tautomerism	3
		Nucleophilic addition reactions with	5
	,. L .,.o.	a. HCN	3
		b. RNH_2 (R = alkyl, HO, NH_2)	
		c. enolate anions (aldol condensation)	3 3
		d. alcohols to form acetals/ketals	3
		e. Grignard reagents	3
9.2.8.	Carboxyl	ic acids and their derivatives	
	9.2.8.1.	Nomenclature of carboxylic acids and their derivatives	2
		(esters, acid halides, amides)	
		Acidity strength related to inductive effects	3
	9.2.8.3.	Preparation of carboxylic acids by hydrolysis of	
		a. esters (including soaps)	1
		b. amides	2
		c. nitriles	3

		9.2.8.4.	Reaction of carboxylic acids	
			a. with alcohols to form esters	1
			b. to form acid chlorides	3
			c. to form anhydrides	3
		9.2.8.5.	Reaction of acid chlorides to form amides	3 3 3 3 3 3 3
		9.2.8.6.	Mechanism of esterification	3
		9.2.8.7.	Multifunctional acids (hydroxyacids, ketoacids)	3
			Polycarboxylic acids	3
	9.2.9.	Amines		
		9.2.9.1.	Nomenclature	
			a. simple amines	1
			b. recognition of primary, secondary, tertiary	1
		9.2.9.2.	5	
			a. As a property of an amine	1
			b. Comparison of basicity of aliphatic and aromatic	3
			c. Comparison of basicity of amines and amides	3
			d. Preparation of amines	
			i. from halides	3
			ii. from aromatic nitro compounds	3
			iii. from amides (by hydrolysis)	3
		9.2.9.3.	Diazotization	2
			a. of aliphatic amines	3 3
			b. of aromatic amines	3
			10. Polymers	
10.1.	Synthe	tic	Ş	
			on polymers	
		10.1.1	.1. polystyrene	2
		10.1.1	.2. polyethene	1
		10.1.1	.3. chain mechanism of formation	2
	10.1.2.		nsation polymers	
		10.1.2	.1. polyesters	2 2
		10.1.2	.2. polyamides	
	10.1.3.	Silicon	es	3
	10.1.4.		ot of cross-linking and its affect on properties	3
10.2.				
	10.2.1.			3
	10.2.2.	Rubbe	r	3
			11. Biochemistry	
11.1.	Carboh	vdrates	TT. BIOCHEITIISTI y	
	11.1.1.		e and fructose	
			.1. chain formulae	1
			.2. Fischer projections	
			.3. Haworth formulae	3
	11.1.2.	Differe	nce between starch and cellulose	2 3 2 2
	11.1.3.	Differe	nce between α - and β - D glucose	2
11.2.	Fats			
	11.2.1.	Structu	ure of fats in relationship to properties	2
			la of glycerol	1
11.3.			ning Compounds of Biological Importance	
	11.3.1.	Amino		
			.1. Ionic structure	1
		11.3.1	.2. Isoelectric point	3

	11.3.1.3.	20 amino acids (classification with structures	2
	11 3 1 /		3
			1
11 2 2		The peptide initiage	•
11.3.2.		Primary structure	1
		-	
		•	3
			3 3 3 3 3
			3
			3
	11.3.2.7.	Denaturation (change in pH, temperature, metals,	2
11.3.3.	Nuclei Acid		
			3
	11.3.3.2.	Nucleosides and nucleotides	3
		Formulae of pyrimidine and purine bases	3
			3 3 3 3 3 3 3
		5	3
			3
	11.3.3.7.	Difference between mRNA and tRNA	3
Enzymes	5		
11.4.1.1	. General	properties, active centers	3
11.4.1.2	. Nomencl	ature, kinetics, coenzymes, function of ATP	3
		12. Analytical chemistry	
12.1.1.			
		• • •	2
		5	2
		ation	3
12.2.1.			
			2
			3
12.2.2.	0	0 1	
			3
			3
	12.2.2.3.		3
Chromen	tographic m	othods of sonaration	3
Chromat	ographic me		5
	<i>Enzymes</i> 11.4.1.1 11.4.1.2 <i>Titration</i> 12.1.1. 12.1.2. <i>Qualitati</i> 12.2.1. 12.2.2.	$\begin{array}{c} 11.3.1.4.\\ 11.3.1.5.\\ 11.3.2.\\ Proteins\\ 11.3.2.1.\\ 11.3.2.2.\\ 11.3.2.3.\\ 11.3.2.3.\\ 11.3.2.4.\\ 11.3.2.5.\\ 11.3.2.6.\\ 11.3.2.7.\\ \end{array}$ $\begin{array}{c} 11.3.3\\ 11.3.2.6.\\ 11.3.2.7.\\ \end{array}$ $\begin{array}{c} 11.3.3\\ 11.3.3.2.\\ 11.3.3.3.\\ 11.3.3.4.\\ 11.3.3.5.\\ 11.3.3.6.\\ 11.3.3.7.\\ \end{array}$ $\begin{array}{c} Enzymes\\ 11.4.1.1.\\ General\\ 11.4.1.2.\\ Nomencl\\ \end{array}$ $\begin{array}{c} Titrations\\ 12.1.1.\\ 12.1.1.\\ 12.1.1.\\ 12.1.1.\\ 12.1.1.\\ 12.2.1.2.\\ \end{array}$ $\begin{array}{c} 12.2.1.1.\\ 12.2.1.1.\\ 12.2.1.2.\\ 12.2.1.1.\\ 12.2.2.1.\\ 12.2.2.1.\\ 12.2.2.3.\\ \end{array}$	provided)11.3.1.4.Separation by electrophoresis11.3.1.5.The peptide linkage11.3.2.1.Proteins11.3.2.2S-S- bridges11.3.2.3.Sequence analysis11.3.2.4.Secondary structure11.3.2.5.Details of α -helix structure11.3.2.6.Tertiary structure11.3.2.7.Denaturation (change in pH, temperature, metals, ethanol)11.3.3.Nuclei Acids and Protein Synthesis11.3.3.3.Pyrimidine and purine11.3.3.3.Formulae of pyrimidine and purine bases11.3.3.4.Difference between ribose and 2-deoxyribose11.3.3.5.Base combination CG and AT (hydrogen-bonding)11.3.3.6.Difference between mRNA and tRNA11.3.3.7.Difference between mRNA and tRNA11.4.1.1.General properties, active centers11.4.1.2.Nomenclature, kinetics, coenzymes, function of ATP12. Analytical chemistryTitrations12.1.1.Titration curve; pH (strong and weak acid) 12.1.1.2.Choice of indicators for acidimetry12.1.1.Identification of Ag ⁺ , Ba ²⁺ , Cl ⁻ , SO ₄ ²⁻ 12.2.1.2.12.2.1.1.Identification of other anions and cations12.2.2.1.Identification of other anions and cations12.2.2.1.Lidentification of other anions and cations12.2.2.1.Lidentification of other anions and cations12.2.2.1.Lidentification of other anions and cations12.2.2.2.Identification

Experimental part

- Level 1: is assigned to the basic experimental activities which are supposed to be mastered by competitors very well
- Level 2: is assigned to the activities which are parts of school experimental exercises in developed countries and the authors of IChO tasks may incorporate them into the tasks without being bounded to mention it in advance
- Level 3: is assigned to such activities which are not in the chemistry syllabus in the majority of participating countries and the authors are obliged to mention them in the set of preparatory tasks

If the organizer wants to apply a technique which is not mentioned in the above syllabus, this technique is set to level 3 automatically.

1. Synthesis of inorganic and organic compounds

1.1.	Heating with burners and hotplates	1
1.2.	Heating of liquids	1
1.3.	Handling the work with inflammable substances and materials	1
1.4.	Measuring of masses (analytical balance)	1
1.5.	Measuring of volumes of liquids (measuring cylinder, pipette, burette)	1
1.6.	Preparation of solutions from a solid compound and solvent	1
1.7.	Mixing and dilution of solutions	1
1.8.	Mixing and stirring of liquids	1
1.9.	Using mixer and magnetic stirrer	2
1.10.	Using a dropping funnel	1
1.11.	Syntheses in flat bottom vessels – general principles	1
1.12.	Syntheses in round bottom vessels – general principles	1
1.13	Syntheses in a closed apparatus – general principles	1
1.14.	Using microscale equipment for synthesis	
1.15.	Apparatus for heating of reaction mixture under reflux	3 2 2
1.16.	Apparatus for distillation of liquids at normal pressure	2
1.17.	Apparatus for distillation of liquids at reduced pressure	
1.18.	Apparatus for steam distillation	2 3 1
1.19.	Filtration through flat paper filter	1
1.20.	Filtration through a folded paper filter	1
1.21.	Handling a water vacuum pump	1
1.22.	Filtration through a Büchner funnel	1
1.23.	Suction through a glass filter	1
1.24.	Washing of precipitates by decantation	1
1.25.	Washing of precipitates on a filter	
1.26.	Drying of precipitates on a filter with appropriate solvents	2 2
1.27.	Recrystallization of substances from aqueous solution	1
1.28.	Recrystallization of substances from a known organic solvent	2
1.29.	Practical choice of an appropriate solvent for recrystallization of a substance	3
1.30.		2
1.30.	Drying of substances in a drying box Drying of substances in a desiccator	2
1.31.		2
	Connecting and using of a gas washing bottle Extraction with an inmiscible solvent	2
1.33.		I
	2. Identification of inorganic and organic compounds:	
0.1	general principles	_
2.1.	Test-tube reactions	1
2.2.	Technique of reactions performed in a dot dish and on a filter paper	1
2.3.	Group reactions of some cations and anions specified by the organizer	2
2.4.	Selective reactions of some cations and anions specified by the organizer	2
2.5.	Specific reactions of some cations and anions specified by the organizer	3
2.6.	Identification of elements by flame coloration (using a platinum wire/MgO rod, Co-glass)	2
2.7.	Using a hand spectroscope/Bunsen spectroscope	3
2.8.	Melting point determination with Kofler or similar type of apparatus	3
2.9.	Qualitative evidence of basic functional groups of organic substances specified by the organizer	2

2.10.	Exploitation of some specific reactions for identification of organic	3
	compounds (specified by the organizer)	
	3. Determination of some inorganic and organic compounds:	
	general principles	
3.1.	Quantitative determinations using precipitation reactions	2
3.2.	Igniting of a precipitate in a crucible	1
3.3.	Quantitative volumetric determinations	1
3.4.	Rules at titrating	1
3.5.	Use of a pipetting ball	1
3.6.	Preparation of a standard solution	1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3
3.7.	Alkalimetric and acidimetric determinations	2
3.8.	Color transitions of indicators at alkalimetric and acidimetric determinations	2
3.9.	Direct and indirect determinations (back titration)	3
3.10.	Manganometric determinations	3
3.11.	Iodometric determinations	3
3.12.	Other types of determinations on basis of redox reactions	3
3.13.	Complexometric determinations	3
3.14.	Color transitions of solutions at complexometric determinations	3
3.15.	Volumetric determinations on basis of precipitation reactions	3
3.16.	Thermometric titration	3
	4. Special measurements and procedures	
4.1.	Measuring with a pH-meter	2
4.2.	Chromatography on thin layers	3
4.3.	Column chromatography	3 3 3 3
4.4.	Separation on ion exchanger	3
4.5.	Measuring of UV-VIS absorbances with a spectral photometer	3
4.6.	Performing of conductivity measurements	3
	5. Evaluation of results	
5.1.	Estimation of experimental errors (significant figures, plots scales)	1