Answer 13: Carbocation and Aromaticity

- 13-1 $(CH_3)_3C^+ SbF_6^-$
- 13-2 Spectrum I: (CH₃)₃CF in SbF₅
- 13-3 6π electrons
- 13-4 yes
- 13-5 (a) A singlet at δ 9.17

13-6

13-7 **D**

Answer 14: Photochemical Ring Closure and Opening

- 14-1 (2*E*,4*Z*,6*Z*)-octatriene
- 14-2 **E**
- 14-3 **F**

14-4 I

14-5 No.

Answer 15: Stereochemistry

- 15-1 (2S,3S)
- 15-2 **X**= CH₃, **Y** = PPh₂
- 15-3 36%
- 15-4 β

15-5

15-6

15-7 none

15-8 99:1

15-9 0

Answer 16: Organic Synthesis

16-1

16-2

Answer 17: Spectroscopy and Polymer Chemistry

- 17-1 C₄H₆O₂
- 17-2 C=O group
- 17-3 A

17-4 **B**

- 17-5 Organic reactions that could transform acetate to alcohol such as acid or base hydrolysis, alcoholysis, or LiAlH₄ reduction.
- 17-6 There are 100 units/molecule. However, the last one does not contain chiral center, therefore, there are 99 chiral centers and each of which would have *R* or *S* configuration. Totally there will be 2^{99} stereoisomers, including enantiomers and diastereomers. Therefore, the number of pairs of enantiomers is $2^{99}/2 = 2^{98}$.

17-7 **C**

17-8 **E**: CO₂

F: (CH₃)₂C=CH₂

H: (CH₃)₂CBr-CH₂Br

G:

17-9 I: (d)

Answer 18: Crown Ether and Molecular Recognition

18-1 **B**

18-2 (c) To remove the tetrahydropyran group

18-4 (b) A high dilution condition is employed in order to inhibit polymer formation.

18-5 Curve I to I; Curve II to G; Curve III to H