Student Code:

Problem 1

23 points

PART A

1-1. Determine the molecular formula and write a balanced equation with correct state of matters for the combustion of Q.

 $Mole C: H: O = (1.5144)(12.0/44.0) : (0.2656)(2.0/18.0) : (0.1575) \\ 12.0 & 1.0 & 16.0 \\ = 0.0344 : 0.0295 : 0.00984 = 7 : 6 : 2 \\ The formula mass of C7H₆O₂ = 122 which is the same as the molar mass given. (2) \\ C_7H_6O_2(s) + \frac{15}{2} O_2(g) ----> 7CO_2(g) + 3H_2O(1) \text{ or } (1) \\ [2C_7H_6O_2(s) + 15O_2(g) ----> 14CO_2(g) + 6H_2O(1)] \\ 3 \text{ marks}$

2 marks for correct formula of Q.1 mark for correct balanced equation with proper states.

1-2. Calculate the heat capacity of the calorimeter (excluding the water). Calculation with proper units:

> Mole Q = 0.6000 = 4.919×10^{-3} (0.5)122.0 $q_v = n\Delta U^0 = 0.6000 \times (-3079) = -15.14 \text{ kJ}$ (2)122.0 Total heat capacity = $-\underline{\mathbf{q}}_{\underline{\mathbf{v}}}$ = $= 6.730 \text{ kJ K}^{-1}$ (1.5)15.14 2.250 ΔT = 6730 J K⁻¹ Heat capacity of water = 710.0×4.184 = 2971 J K⁻¹ (1)Heat capacity of calorimeter = 6730-2971 =3759 J K⁻¹ (1)

> > 6 marks

The heat capacity of calorimeter is

1-3. Calculate the standard enthalpy of formation $(\Delta H^{0}f)$ of Q. Calculation with proper units:

$\Delta n_g = 7 - \frac{15}{2} = -0.5 \text{ mol}$	(0.5)
$\Delta H^{O} = \Delta U^{O} + RT \Delta n_{g}$	(0.5)
$= -3079 + (8.314 \times 10^{-3})(298)(-0.5)$ = -3079-1	(1)
= -3080	(0.5)
$\Delta H^{O} = (7\Delta H^{O}_{f}, CO_{2}(g) + 3\Delta H^{O}_{f}, H_{2}O(l)) - (\Delta H^{O}_{f}, Q)$	(1)
$\Delta H^{0}_{f} \text{ of } Q = 7(-393.51) + 3(-285.83) - (-3080)$	(1)
$= -532 \text{ kJ mol}^{-1}$	(0.5)
	5 marks

ΔH ⁰ f of Q is	-532	kJ mol ⁻¹

PART B

1-4. Show whether Q is monomer or dimer in benzene by calculation assume that Q is a monomer in water. Calculation:

$C_B \pmod{L^{-1}}$	0.0118	0.0478	0.0981	0.156		
$C_W \pmod{L^{-1}}$	0.00281	0.00566	0.00812	0.0102		
either C_B/C_W	4.20	8.44	12.1	15.3		
or C_B/C_W^2	1.49×10^{3}	1.49×10^{3}	1.49×10^{3}	1.50×10^{3}	(2)	
(or $\sqrt{C_{B}/C_{W}}$	38.6	38.6	38.6	38.7)		
From the results show that the ratio C_B/C_W varies considerably, whereas the ratio						
C_B/C_W^2 or $\sqrt{C_B/C_B}$	C _W is almo	st constant,	showing that	t in benzene,Q	is	
associated into doul	ole molecul	e.				
Q in benzene	e is	monome	r 🗸	dimer.	(1)	

 $\begin{array}{c} 3 \text{ marks} \\ \text{1-5.} \quad \text{Calculate the freezing point (T_f) of a solution containing 0.244 g of Q in 5.85 g of benzene at 1 atm.} \\ \quad \text{Calculation} \end{array}$

If Q is completely dimerized in benzene, the apparent molecular mass should be 244.

T_f of solution is

-1 mark for incorrect temperature.

-1 mark for incorrect heat of fusion.

<u>20 points</u>

PART A

2-1. On adding 1.00 mL of HCl, what species reacts first and what would be the product?

2-2. What is the amount (mmol) of the product formed in (2-1)?

mmol of product =
$$1.00 \times 0.300 = 0.300$$
 0.5 mark

2-3. Write down the main equilibrium of the product from (2-1) reacting with the solvent?

$$HA^{-} + H_2O \longrightarrow H_2A + OH^{-}$$

2-4. What are the amounts (mmol) of Na₂A and NaHA initially present? <u>Calculation:</u>

> At pH 8.34 which is equal to $(pK_{a1} + pK_{a2})/2$ all A^{2-} are protonated as HA⁻. Therefore no. of A^{2-} initially present in the solution = 0.300 x 10.00 = 3.00 mmol At pH 10.33, the system is a buffer in which the ratio of $[A^{2-}]$ and $[HA^{--}]$ is equal to 1. Thus $[HA^{--}]_{initial} + [HA^{--}]_{formed} = [A^{2-}]_{initial} - [HA^{--}]_{formed}$ The amount of initial HA⁻⁻ = 3.00 - 0.300 - 0.300 mmol = 2.40 mmol

Total volume of HCl required	$= [(2 \times 3.00) + 2.40]/0.300$ = 28.00 mL	
		1.5 marks

PART B

2-6. Calculate the absorbance at 400 nm of Solution III. Calculation:

> CH₃COOH. To obtain the absorbance of the solution, it is necessary to calculate the concentration of the basic form of the indicator which is dependent on the $[H^+]$ of the solution. $\sqrt{K_a.C}$ $[H^+]$ of solution III = $= \sqrt{1.75 \times 10^{-5} \times 1.0} \\ = 4.18 \times 10^{-3}$ (1.0 mark) K_{In} From HIn \leftarrow In⁻ + H⁺ $K_{In} = \frac{[H^+][In^-]}{[HIn]}$ (0.5 mark) $\frac{[In^{-}]}{[HIn]} = \frac{K_{In}}{[H^{+}]}$ $\frac{10^{-3.38}}{10^{-2.38}}$ = 0.100 = $[In^{-}]$ 0.100 (1.0 mark) = [HIn] 10^{-5} Whereas $[HIn] + [In^-]$ =10-5 $10[In^{-}] + [In^{-}]$ = 0.091 x 10⁻⁵ [In⁻] = (1.5 mark) $\frac{0.091 x 10^{-5}}{1.00 x 10^{-5}} \ x \ 0.300$ \therefore Absorbance of solution III = 0.027 (1.0 mark)=

Solution III is the indicator solution at 10^{-5} M in a solution containing 1.0 M

-0.5 mark for incorrect unit

The absorbance at 400 nm of Solution III =

5 marks

0.027

2-7. Apart from H⁺, OH⁻, and H₂O, what are all the chemical species present in the solution resulting from mixing Solution II and Solution III at 1:1 volume ratio?

 $\rm CH_3COOH$, $\rm CH_3COO^-$, $\rm Na^+$, $\rm ~HIn$, $\rm In^-$

1.5 marks

2-8. What is the absorbance at 400 nm of the solution in (2-7)? <u>Calculation:</u>

When solutions II and III are mixed at 1:1 volume ratio, a buffer solution of $0.05 \text{ M CH}_3\text{COO}^-/0.45 \text{ M CH}_3\text{COOH}$ is obtained.					
[H ⁺] of mixture solution	n =	Ka $\frac{[CH_3COOH]}{[CH_3COO^-]}$			
	=	1.75 x 10^{-5} x $\frac{0.45}{0.05}$ 15.75 x 10^{-5} (1.0 mark)			
therefore $\frac{[In^-]}{[HIn]}$	=	$\frac{K_{In}}{[H^+]}$			
	=	$\frac{10^{-3.38}}{15.75 \text{x} 10^{-5}}$			
[In ⁻] [HIn]	- =	2.65 (1.0 mark)			
Whereas [HIn] + [In ⁻]	=	10 ⁻⁵			
$\frac{[In^-]}{2.65} + [In^-]$	=	10 ⁻⁵			
(1.5 mort_{co})		$[In^{-}] = 0.726 \times 10^{-5}$			
(1.3 marks)		5			
: Absorbance of solution	=	$\frac{0.726 \times 10^{-5}}{1.0 \times 10^{-5}} \times 0.300$			
	=	0.218			
		(0.5 mark)			
		-0.5 mark for incorrect unit			

The absorbance at 400 nm of the solution =

4 marks

0.218

Name:

Γ

2-9. What is the transmittance at 400 nm of the solution in (2-7)? <u>Calculation:</u>

Transmittance of solution	=	antilog (-absorb	ance)
	=	0.605	
		-0.5 mark	for incorrect unit
Transmittance of the solution =	0.60	05 or 60.5%	1 mark

Problem 3

3-1. How many beta decays in this series? Show by calculation.

Calculation:

A = 232 - 208 = 24; 24/4 = 6 alpha particles (1) The nuclear charge is therefore reduced by $2 \ge 6 = 12$ units, however, the difference in nuclear charges is only 90 - 82 = 8 units. Therefore there must be $12 - 8 = 4\beta^{-}$ emitted. (1)

4

2 marks

20 points

Number of beta decays =

3-2. How much energy in MeV is released in the complete chain?

Calculation:

 $\begin{array}{ll} {}^{232}_{90}{}^{7}\text{Th} & \rightarrow \ {}^{208}_{82}{}^{9}\text{Pb} \ + \ 6 \ {}^{4}_{2}\text{He} \ + 4\beta^{-} \\ & \text{Energy released is Q value} \\ & Q \ = \ [m(^{232}\text{Th})\text{-m}(^{208}\text{Pb})\text{-}6m(^{4}\text{He})]c^{2} \\ & (\text{the mass of } 4\text{e}^{-} \text{ are included in daughters}) \\ & = \ [232.03805 \ \text{u} \ - \ 207.97664 \ \text{u} \ - \ 6 \ x \ 4.00260 \ \text{u}] \ x \ 931.5 \ \text{MeVu}^{-1} \\ & = \ (0.04581 \text{u})(931.5 \ \text{MeVu}^{-1}) \ = \ 42.67 \ \text{MeV} \end{array}$ (2)

Energy released = 42.67

4 marks

MeV

3-3. Calculate the rate of production of energy (power) in watts ($1W = Js^{-1}$) produced by 1.00 kilogram of 232 Th ($t_{1/2} = 1.40 \times 10^{10}$ years). Calculation:

$$1.00 \text{ kg contains} = \frac{1000 \text{g x} 6.022 \times 10^{23} \text{atomsmol}^{1}}{232 \text{gmol}^{1}}$$

$$= 2.60 \text{ x } 10^{24} \text{ atoms} \qquad (1)$$
Decay constant for $\frac{232}{\text{Th}}$

$$\lambda = \frac{0.693}{(1.40 \times 10^{10} \text{ y})(3.15 \text{ x} 10^{7} \text{ s y}^{-1})} \qquad (1)$$

$$= 1.57 \text{ x } 10^{-18} \text{ s}^{-1}$$

$$A = N\lambda = (2.60 \text{ x } 10^{24})(1.57 \text{ x } 10^{-18}) \text{ where A is activity}$$

$$= 4.08 \text{ x } 10^{6} \text{ dps (disintegrations s}^{-1})$$
Each decay liberates 42.67 MeV (1)
Rate of production of energy (power)
4.08 x 10^{6} \text{ dis s}^{-1} \text{ x } 42.67 \text{ MeV dis}^{-1} \text{ x } 1.602 \text{ x } 10^{-13} \text{ J Mev}^{-1}
$$= 2.79 \text{ x } 10^{-5} \text{ J s}^{-1} = 2.79 \text{ x } 10^{-5} \text{ W} \qquad (2)$$

5 marks

Rate of production of energy =
$$2.79 \times 10^{-5}$$
 W

Problem 3

3-4. What volume in cm³ of helium at 0 °C and 1 atm collected when 1.00 gram of 228 Th (t_{1/2} = 1.91 years) is stored in a container for 20.0 years. <u>Calculation:</u>

 228 Th $\rightarrow ^{208}$ Pb + 5⁴He (1)The half-lives of various intermediates are relatively short compared that of ²²⁸Th. $A = \lambda N = \left(\frac{0.693}{1.91} \left[\frac{(1.00)(6.02 \times 10^{23} \text{mot}^{1})}{228 \text{gmoI}^{1}}\right]\right]$ $= 9.58 \text{ x } 10^{20} \text{ y}^{-1}$ (1)Number of He collected $N_{He} = (9.58 \text{ x } 10^{20} \text{ y}^{-1})(20.0 \text{ y})(5 \text{ particles})$ = 9.58×10^{22} particles of He (1) $v_{\text{He}} = \frac{(9.58 \times 10^{22})(22.4 \text{ mot}^{1})(10^{3} \text{ cm}^{3} \text{ L}^{-1})}{6.022 \times 10^{23} \text{ mot}^{1}}$ $= 3.56 \times 10^3 \text{ cm}$ (2) 5 marks cm^3 Volume of He at 0 °C and 1 atm

- Volume of He at 0 °C and 1 atm = 3.56×10^3 cm³ 3-5. One member of thorium series, after isolation, is found to contain 1.50 x 10¹⁰ atoms of the nuclide and decays at the rate of 3440 disintegrations per minute.
 - What is the half-life in years? Calculation:

$$A = \lambda N;$$

$$t_{1/2} = \frac{0.693}{I} = \frac{0.693N}{A} \quad (1.5)$$

$$= \frac{(0.693)(30 \times 10^{10} \text{ atoms})}{344 (0 \text{atomsmin})} \quad (1.5)$$

$$= 3.02 \times 10^{6} \text{ min}$$

$$= 5.75 \text{ years} \quad (1)$$

$$4 \text{ marks}$$

Half-life = 5.75 years years

Problem 4

28 points

2 marks

4-1. The molecular formula of \mathbf{L} is $C_{10}H_8N_2O_2$

Knowing that L was synthesized from bipyridine and during the reaction bipyridine was simply oxidized to bipyridine oxide. The molecular mass of bipyridine is 156 (for C_{10} H₈ N₂) while the molecular mass of L is 188. The difference of 32 is due to 2 atoms of oxygen. Therefore , the molecular formula of L is C_{10} H₈N₂O₂.

4-2. The structures of bipyridine and L

4-3. Does the ligand **L** have any charge, i.e., net charge ? (Please tick).

4-4. Draw the structure when one molecule of **L** binds to metal ion (M).

4-5. Determine the empirical formula of **A**.

Calculation:

	Fe	С	Н	Cl	Ν	0
%	5.740	37.030	3.090	10.940	8.640	34.560
mol	0.103	3.085	3.090	0.309	0.617	2.160
mol ratio	1.000	29.959	30.00	2.996	5.992	20.971
atom ratio	1	30	30	3	6	21

The empirical formula of \mathbf{A} is

 $FeC_{30}H_{30}Cl_3N_6O_{21}$

3 marks

What are the values of m and n in $FeL_m(ClO_4)_n.3H_2O?$

Since the molecular formula contains one atom of Fe , so in this case the empirical formula is equivalent to the molecular formula. The molecular formula of L has been obtained previously in (4a) and (4b) , therefore we can work to find m = 3. Having obtained the value of m , one can work out for n and find that n = 3.

2 marks

Which configuration, high or low spin, is the correct one (please tick)?

1 mark

The best evidence to support your answer for this high/low spin selection:

1 mark

We can use a simple relation between number of unpaired electrons and the magnetic moment as follows.

$$i = \sqrt{n(n+2)}$$

where μ is the so-called 'spin-only' magnetic moment and n is the number of unpaired electrons. Thus , for high spin case ,

 $\mu = \sqrt{5(5+2)} = \sqrt{35} = 5.92$ B.M.

And for low spin case , $\mu = \sqrt{1(1+2)} = \sqrt{3} = 1.73$ B.M

The measured magnetic moment , μ , of A given in Table 4b is 6.13 B.M. which is in the range for high spin case . Therefore , we can conclude that A would exist as a high spin complex.

4-7. λ_{max} of complex **A** is

1 mark

From Table 4c , the color absorbed is complementary to the color seen.

nm.

450

4-8 Calculate the 'spin-only' magnetic moment of complex **B**: <u>Calculation:</u> From $i = \sqrt{n(n+2)}$ For Cr^{3+} , n = 3 1 mark Therefore, $\mathbf{m} = \sqrt{3(3+2)} = \sqrt{15} = 3.87$ B.M. The 'spin-only' magnetic moment of complex **B** = <u>3.87</u> I.

1 mark

4-9	The empirical formul	a of B	is	CrC ₂₀ H ₁₈ N ₄ Cl ₃ C	D ₉ 1 mark
		X	=	2	1 mark
		У	=	2	1 mark
		Z	=	1	1 mark

23 points

5-1. Write structures of **A** - **D** with appropriate stereochemistry in Haworth projection, except for **B**.

5-2. Write molecular formula each for compounds **F** and **G** and structural formula for compound **H** and **I** and indicate stereochemistry of **H**.

5-3. Deduce the absolute configuration of (-) **E** and the structure with configuration of each intermediate (**J-O**) in the sequence with the proper R,S-assignment.

5-4. The mechanism involved in the conversion of compound **O** to (-) **1-phenylethane**-*1-d* is

$S_N 1$
 $S_N 2$
S _N i
E1
E2

1 mark

Name:	Student Code:

2

16 points

6-1.

sulfonic acid groups are formed from oxidation of a disulfide bond.

1 mark

6-2. Complete structure of DNP-Asp at its isoelectric point is

Remarks

- 2 marks for exactly the same structure
- -1 mark for the condensed structure
- -0.5 mark for Zwitterionic form
- 0 mark for misplaced DNP group

6-3.

The sequence of B8 is Cya-Tyr-Ile-Glu

2 marks

<u>Remarks</u>

- -0.5 marks if the sequence is correct but the symbol "Cys" is used in place of "Cya"
- -1 mark if "Cya" is put correctly at N-terminus but the sequence is incorrect
- 0 mark for the reverse sequence

6-4.

The sequence of B9 is	Asp-Cya-Pro-Leu	
		1 mark

Remarks

- -0.5 marks if the sequence is correct but the symbol "Cys" is used in place of "Cya"
- 0 mark for wrong sequence even if Asp and Leu are placed correctly since the information is already provided in the question

Student Code:

Problem 6

6-5. The *complete* structure of A is

Cys-Tyr-Ile-Glu-Asp-Cys-Pro-Leu-Gly-NH₂

5 marks

<u>Remarks</u>

- 5 marks for exactly the same sequence with correct placement of disulfide bond
- 1 mark for missing or misplaced the disulfide bond.
- 0.5 marks for missing "NH₂" group at C-terminus.
- 0.5 for using the symbol "Cya" is used in place of "Cys".
- 0 mark if the sequence wrong.
- 6-6. Write the revised structure of A below and circle the site(s) to indicate all the possible source of ammonia

Cys-Tyr-Ile-Gln Asn-Cys-Pro-Leu-Gly NH

3 marks

<u>Remarks</u>

- 0.5 marks for each correct position of the amide group (Glu->Gln, Asp->Asn and at C-terminus)
- 0.5 marks for each circle at appropriate places (circle at Gly is allowed)

6-7.

The isoelectric point of A is

2 marks