Giochi della Chimica 2024 Fase nazionale – Classe C

- **1.** Dati 6,022 ·10²⁴ ioni ferro(III) a disposizione, di quale tra i seguenti composti si ottengono 5 moli?
- A) FeCl₃
- B) FeSO₄
- C) Fe_2O_3
- D) Fe
- **2.** Data una soluzione di ammoniaca 0,1 mol/L, quale valore di pH si avvicina di più al valore reale?
- A) 5
- B) 7
- C) 11
- D) 13
- **3.** L'acido adipico è un acido dicarbossilico a catena satura con sei atomi di carbonio.
- A) una mole di questo acido contiene quattro atomi di ossigeno
- B) una mole di questo acido contiene un numero di Avogadro di atomi
- C) una mole di questo acido contiene dieci moli di atomi di idrogeno
- D) una mole di questo acido contiene il doppio delle molecole di una mole di acido esanoico, monocarbossilico
- **4.** Date le soluzioni HCl 37% m/m, HCl 0,05 mol/L, CH₃COOH 0,1 mol/L e HCN 0,05 mol/L, qual è la più indicata da usare in laboratorio per determinare il grado di purezza in % m/m di un barattolo da 100 g di NaOH che si è carbonatato rimanendo aperto all'aria? Si dispone dei seguenti strumenti di laboratorio: buretta da 50,0 mL, pipetta tarata da 20,00 mL, matraccio tarato da 100,0 mL, bilancia analitica, pHmetro, becker, imbuto, navicella per pesata.
- A) CH₃COOH 0,1 mol/L
- B) HCl 37% m/m
- C) HCN 0,05 mol/L
- D) HCl 0,05 mol/L
- **5.** Il principio di indeterminazione di Heisenberg sussiste tra le coppie di grandezze:
- A) energia e posizione
- B) posizione e quantità di moto
- C) posizione e tempo
- D) quantità di moto ed energia
- **6.** Stabilire l'effetto di un catalizzatore su una reazione di equilibrio scegliendo fra le seguenti opzioni:
- A) aumenta l'energia di attivazione
- B) aumenta il valore della costante di equilibrio
- C) diminuisce il valore della costante di equilibrio
- D) diminuisce l'energia di attivazione

- **7.** Stabilire il volume di idrogeno, misurato a TPS, che si forma mescolando 0,10 mol di alluminio e 0,22 mol di acido cloridrico.
- A) 4.93 L
- B) 2,24 L
- C) 1,12 L
- D) 2,46 L
- **8.** Fra i composti: BCl₃, ClF₃, NCl₃, BF₃ e PCl₃ indicare quelli caratterizzati da una geometria planare secondo la teoria VSEPR.
- A) BCl₃, ClF₃, PCl₃
- B) BCl₃, BF₃, ClF₃
- C) NCl₃, PCl₃, BCl₃
- D) BCl₃, NCl₃, ClF₃
- **9.** Secondo la teoria VSEPR, le specie chimiche NO₂ e NO₂⁺ sono, rispettivamente:
- A) angolata lineare
- B) lineare lineare
- C) lineare angolata
- D) angolata angolata
- **10.** Stabilire se le molecole NH₃ e CCl₄ hanno un momento dipolare diverso da zero.
- A) NH₃ no e CCl₄ sì
- B) NH₃ sì e CCl₄ no
- C) entrambe hanno un momento dipolare diverso da zero
- D) nessuna delle due ha un momento dipolare diverso da zero
- **11.** Indicare quali, tra le seguenti specie chimiche CO_2 , SO_2 , O_3 , $NO_2^ I_3^-$, presentano la stessa geometria, in base alla teoria VSEPR.
- A) SO_2 , O_3 , NO_2
- B) SO_2 , NO_2^- , I_3^-
- C) CO₂, SO₂, NO₂
- D) CO_2, O_3, I_3^-
- **12.** Indicare quale tra le seguenti specie allo stato elementare presenta il punto di fusione più basso.
- A) Fe
- B) Al
- C) W
- D) Hg
- 13. Indicare la coppia costituita da ioni isoelettronici.
- A) F^- , Ca^{2+}
- B) F-, Cl-
- C) F^{-} , Al^{3+}
- D) Ca^{2+} , Mg^{2-}

- **14.** Fra le molecole di H₂O si instaurano legami a ponte di idrogeno, che sono invece assenti fra le molecole di H₂S. Un'evidenza sperimentale si può ottenere dal confronto:
- A) dei rispettivi coefficienti di dilatazione termica
- B) dei rispettivi indici di rifrazione
- C) delle rispettive temperature di ebollizione
- D) nessuna delle altre opzioni è corretta
- 15. Data la reazione:

$$N_{2(g)} + 3 H_{2(g)} \rightarrow 2 NH_{3(g)}$$

si osserva che, quando la temperatura aumenta, la costante di equilibrio diminuisce. Assumendo che ΔH° e ΔS° siano indipendenti dalla temperatura, si può affermare che:

- A) la reazione è esotermica
- B) la reazione è endotermica
- C) la reazione non produce calore
- D) nessuna delle precedenti
- **16.** Indicare il pH di una soluzione di ammoniaca $0.01 \text{ mol/L } (pK_b = 4.75).$
- A) 12,44
- B) 10,62
- C) 9.50
- D) 4,75
- **17.** Indicare i coefficienti stechiometrici della seguente equazione redox non bilanciata.

$$Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO + H_2O$$

- A) 3, 4, 3, 2, 4
- B) 3, 2, 3, 2, 2
- C) 3, 8, 3, 2, 4
- D) 3, 6, 3, 2, 3
- **18.** Una cella per la misura della conducibilità, piena di una soluzione 0,1 mol/L di KCl ha una conduttività di 0,0112 Ohm⁻¹ cm⁻¹ e una resistenza di 510 Ohm. Indicare il valore della costante di cella.
- A) 0.571 cm^{-1}
- B) 5.71 cm^{-1}
- C) 0.286 cm^{-1}
- D) 2.86 cm^{-1}
- **19.** 50 mL di HCl 0,1025 mol/L vengono titolati con 48,5 mL di una soluzione di NaOH 0,1057 mol/L. Quale indicatore scegliereste per individuare il punto di arresto della titolazione?
- A) salda d'amido
- B) fenolftaleina
- C) ferroina
- D) nessuna delle altre sostanze

- **20.** Indicare il pH al punto di equivalenza nella titolazione di 20 mL di un acido debole monoprotico $(0,100 \text{ mol/L}; pK_a = 4,0)$ con 20 mL di NaOH 0,100 mol/L.
- A) 5,65
- B) 7,00
- C) 8,35
- D) 11,5
- **21.** L'idrogeno molecolare è la più semplice delle molecole neutre. La sua energia di dissociazione omolitica ($H_2 \rightarrow 2~H$) è $D^\circ_{0K} = 2,68~eV$, mentre la sua energia di dissociazione eterolitica ($H_2 \rightarrow H^+ + H^-$) è molto maggiore ($\Delta H^\circ_{0K} = 17,4~eV$). Indicare la relazione per passare dall'una all'altra indicando con E^I l'energia di prima ionizzazione dell'idrogeno atomico ($H \rightarrow H^+ + e^-$) e con AE l'affinità elettronica ($H + e^- \rightarrow H^-$).
- A) $D_{0K}^{\circ} = \Delta H_{0K}^{\circ} + E^{I} + AE$
- $B) \quad \Delta H^{\circ}_{0K} = D^{\circ}_{0K} + E^{I} + AE$
- $C) \quad \Delta H^{\circ}_{0K} = D^{\circ}_{0K} E^{I} AE$
- D) $\Delta H^{\circ}_{0K} = D^{\circ}_{0K} + E^{I} AE$
- **22.** Un processo chimico isotermo spontaneo è caratterizzato da una variazione negativa dell'energia libera ΔG . Ricordando che la costante di equilibrio è determinata dalla variazione standard dell'energia libera ΔG° , indicare la relazione corretta all'equilibrio, ovvero quando la reazione smette di evolvere verso i prodotti.
- A) $\Delta G = 0$
- B) $\Delta G = \Delta G^{\circ}$
- C) $\Delta G^{\circ} = 0$
- D) $\Delta G + \Delta G^{\circ} = 0$
- **23.** All'interno di un contenitore ermetico a volume costante (1 L) sono contenute 2 mol di diborano B_2H_6 gassoso a 25 °C. Sapendo che a 150 °C il diborano è completamente dissociato in borano BH_3 , indicare la pressione nel contenitore a 150 °C.
- A) 48,95 atm
- B) 69,48 atm
- C) 97,91 atm
- D) 138,96 atm
- **24.** L'1-metilcicloesene reagisce con Br₂ e H₂O per dare una miscela di bromidrine otticamente inattiva. Indicare quale coppia di stereoisomeri si forma.

25. Indicare il prodotto della reazione tra acetofenone (1-feniletan-1-one) e idrazina in ambiente basico per KOH a caldo.

$$A$$
 B C D

- **26.** Quale sequenza di passaggi converte il propino in 4-eptanolo?
- A) 1. NaNH₂ 2. CH₃CH₂CHO 3. H_{2(eccesso)}, Pt
- B) 1. NaNH₂ 2. CH₃CH₂CH₂CHO 3. H_{2(eccesso)}, Pt
- C) 1. NaNH₂ 2. CH₃CH₂CHO 3. H_{2(1 mol)}, Pt
- D) 1. CH₃CH₂CH₂CHO 2. H_{2(eccesso)}, Pt
- 27. Il dolcificante sintetico aspartame è 160 volte più dolce del saccarosio. Quali prodotti si otterrebbero se l'aspartame fosse idrolizzato completamente in una soluzione acquosa di HCl?

- A) un dipeptide e metanolo
- B) dimetilestere dell'acido aspartico e fenilalanina
- acido aspartico, fenilalanina e metanolo
- D) acido aspartico ed estere metilico della fenilalanina
- 28. Indicare quali stereoisomeri si ottengono dalla reazione di addizione elettrofila di Br₂ al trans-3-esene.
- A) la forma meso del 3,4-dibromoesano
- B) una miscela racemica degli enantiomeri treo del 3,4-dibromoesano
- C) una coppia di diastereoisomeri
- D) tutti i possibili stereoisomeri
- 29. Indicare il prodotto più probabile che si ottiene dalla reazione:

OH
$$\frac{H_2SO_4}{A}$$

A B C D

30. Indicare il prodotto più probabile della reazione:

- 31. Il diossido di cloro allo stato gassoso è prodotto per reazione di clorato di sodio con acido ossalico, in presenza di acido solforico. Indicare il volume di diossido di cloro, a 1 atm e 25 °C, che si ottiene da 2,13 g di clorato di sodio e 0,45 g di acido ossalico, se la reazione avviene con una resa dell'80%.
- A) 244 mL
- B) 391 mL
- C) 0,196 mL
- D) 196 mL
- 32. Date le costanti di solubilità dei composti: AgCl = $1,77 \cdot 10^{-10}$ e Fe(OH)₂ = $1,64 \cdot 10^{-14}$, stabilire quale delle seguenti affermazioni è corretta partendo da 1 g di ciascun composto e considerando 1 L di soluzione a pH 3:
- A) $[Fe^{2+}] < [Ag^+]$ B) $[Fe^{2+}] > [Ag^+]$
- C) $[Fe^{2+}] = [Ag^{+}]$
- D) non è possibile rispondere
- 33. Indicare il pH di una soluzione ottenuta mescolando 100 mL di HCl 0,0030 mol/L e 200 mL di acido acetico 0,15 mol/L ($K_a = 1.8 \cdot 10^{-5}$).
- A) 2,32
- B) 2,52
- C) 2,71
- D) 3,00
- **34.** Se il ΔG° di una reazione è +10 kJ mol⁻¹, si può affermare che:
- A) il valore della costante di equilibrio della reazione sarà maggiore di 1
- B) il valore della costante di equilibrio della reazione sarà inferiore a 1
- C) la costante di equilibrio della reazione avrà valore negativo
- D) la costante di equilibrio della reazione sarà zero

35. Per la standardizzazione di una soluzione di NaOH circa 0,1 mol/L con ftalato acido di potassio (MM = 204,22 g/mol) sono state effettuate 5 titolazioni come da tabella:

n°	mg di ftalato acido	mL di NaOH
	di potassio	circa 0,1 mol/L
1	408,4	20,10
2	466,0	22,80
3	376,0	18,50
4	373,2	18,30
5	452,0	22,20

Indicare la concentrazione media dell'NaOH e la deviazione standard:

- A) 0,0995; 0,0003
- B) 0,0997; 0,1000
- C) 0,0997; 0,0003
- D) 0,0099; 0,0003
- **36.** Quale tecnica analitica si deve utilizzare nella determinazione del rame in una lega di alluminio in concentrazioni dell'ordine di grandezza di ppm?
- A) conduttimetria
- B) assorbimento atomico
- C) gravimetria
- D) nessuna delle altre risposte
- **37.** Il pH di una soluzione acquosa 0,1 mol/L di K_2HPO_4 (p $K_{a1} = 2,13$; p $K_{a2} = 7,21$; p $K_{a3} = 12,32$) è:
- A) 13,1
- B) 9.8
- C) 6.7
- D) 3.9
- **38.** Una soluzione contiene Fe^{3+} e Cr^{3+} entrambi in concentrazione 10^{-2} mol/L; per separarli come idrossidi con una precipitazione frazionata è opportuno usare: $[K_{ps} \ Fe(OH)_3 = 10^{-38} \ (mol/L)^4; K_{ps} \ Cr(OH)_3 = 10^{-30} \ (mol/L)^4]$
- A) tampone acetato (pH 4)
- B) tampone fosfato (pH 7)
- C) tampone ammoniacale (pH 9)
- D) HCl 2 M
- **39.** Una comune sorgente di radiazione per la spettrofotometria infrarossa è:
- A) filamento di Nernst
- B) lampada a catodo cavo
- C) lampada a deuterio
- D) lampada ad arco
- **40.** Un'acqua minerale contiene 60 ppm di ioni Ca^{2+} e 6 ppm di ioni Mg^{2+} . Indicare la durezza dell'acqua in gradi francesi (1 °F = 10 mg/L di CaCO₃).
- A) 175,0 °F
- B) 17,5 °F
- C) 35,0 °F
- D) 8,7 °F

- **41.** Il pH di una soluzione acquosa che contiene 2 moli di un acido debole HA e 1 mole di NaOH in 0,5 L è 5,4. Indicare la costante acida di HA.
- A) $7.3 \cdot 10^{-5}$
- B) $8.1 \cdot 10^{-7}$
- C) $4.0 \cdot 10^{-6}$
- D) $2.9 \cdot 10^{-4}$
- **42.** Le colonne capillari sono spesso preferite in gascromatografia alle colonne impaccate perché:
- A) prevengono la sovrasaturazione del detector
- B) hanno maggiore potere risolutivo
- C) permettono un'iniezione del campione più agevole
- D) sono più facili da preparare in laboratorio
- **43.** Indicare la % m/m di beta-carotene (MM = 536,88 g/mol) contenuto nelle carote sapendo che: i) una soluzione $1,5 \cdot 10^{-6} \text{ mol/L}$ di beta-carotene ha un'assorbanza di 0,210 a 470 nm in una cella da 1 cm; ii) una soluzione ottenuta sciogliendo 10,00 g di carota in un litro di etanolo 95%, nelle stesse condizioni, ha una trasmittanza di 0,339 che si può attribuire totalmente al beta-carotene.
- A) 0,018% m/m
- B) 0.18% m/m
- C) 0,30% m/m
- D) 18,0% m/m
- **44.** L'elettrolisi di un cloruro metallico fuso di formula MeCl₂ ha fatto depositare al catodo una massa di metallo pari a 0,109 g. Si indichi la massa atomica del metallo Me, sapendo che in una cella d'elettrolisi messa in serie alla prima si sono depositati al catodo 0,970 g di Ag, da una soluzione acquosa di AgNO₃.
- A) 24,3
- B) 40,1
- C) 87,6
- D) 55,84
- 45. Si consideri la seguente cella elettrochimica:

$$Zn_{(s)}/Zn_{(aq)}^{2+}/Cu_{(aq)}^{2+}/Cu_{(s)}$$

 $(E^{\circ}Cu^{2+}/Cu = 0.337 \text{ V}; E^{\circ}Zn^{2+}/Zn = -0.763 \text{ V})$

le cui soluzioni sono state preparate dai rispettivi sali di solfato di zinco e rame. Se la concentrazione di zinco solfato nella semicella di sinistra è 0,005 M, mentre quella del rame solfato nella semicella di destra è 0,002 M, la differenza di potenziale dalla cella a 298 K è vicina a:

- A) 1,017 V
- B) 1,150 V
- C) 1,088 V
- D) 0,891 V

- **46.** Nella semicella 1 di una cella elettrochimica, un elettrodo d'argento è immerso in una soluzione di nitrato d'argento 0,1 M. Nella semicella 2, un elettrodo d'argento è immerso in una soluzione di nitrato d'argento 0,01 M. Se si collegano le due semicelle con un ponte salino, e si collegano i due elettrodi con un filo metallico, si osserva che:
- A) gli elettroni percorrono il filo dalla semicella 1 alla 2 e gli ioni nitrato attraversano il setto poroso in direzione opposta
- B) gli elettroni percorrono il filo dalla semicella 2 alla 1 e gli ioni nitrato attraversano il setto poroso in direzione opposta
- C) gli elettroni percorrono il filo dalla semicella 2 alla 1 e gli ioni nitrato attraversano il setto poroso nella stessa direzione
- D) gli elettroni percorrono il filo dalla semicella 1 alla 2 e gli ioni nitrato attraversano il setto poroso nella stessa direzione
- **47.** In un contenitore ermetico a volume costante (3 L) sono contenute 3 mol di SOCl₂ gassoso a 25 °C. Sapendo che a 300 °C la molecola è completamente dissociata in SO gassoso e Cl₂ gassoso, indicare la pressione a 300 °C nel contenitore.
- A) 47,06 atm
- B) 48,96 atm
- C) 24,48 atm
- D) 94,11 atm
- 48. Indicare l'affermazioni ERRATA.
- A) una reazione esotermica è certamente spostata verso la formazione dei prodotti di reazione
- B) una reazione endotermica può essere spostata verso la formazione dei prodotti di reazione
- C) una reazione termicamente neutra non scambia calore con l'ambiente
- D) un processo esotermico cede calore all'ambiente
- **49.** Indicare il prodotto principale della seguente reazione:

$$+ HCI \longrightarrow$$

$$CI \qquad CI \qquad CI \qquad CI$$

$$A \qquad B \qquad C \qquad D$$

50. Indicare il prodotto principale della seguente sequenza di reazioni:

51. In natura, la vanillina (4-idrossi-3-metossibenzaldeide) è legata al glucosio con legame β -glicosidico. Indicare la struttura del β -D-glucopiranoside della vanillina.

52. Quali delle seguenti molecole sono forme meso?

- A) composti 1 e 2
- B) composti 2 e 3
- C) composto 3
- D) composto 1
- **53.** Qual è il principale alogenuro alchilico prodotto dalla reazione di 2-etossipropano con acido iodidrico?
- A) CH₃CH₂CH₂I
- B) CH₃CH₂I
- C) (CH₃)₂CHI
- D) CH₃I
- **54.** La seguente reazione in soluzione acquosa:

- A) provoca la scissione del legame C-O sul C-6
- B) forma una miscela di emiacetali del D-glucosio
- C) forma una miscela di due monosaccaridi diastereomerici
- D) forma monosaccaridi enantiomerici

55. Un composto organico X, otticamente inattivo, ha formula molecolare $C_5H_{12}O$. Per ossidazione controllata con CrO_3 in piridina forma un composto Y, di formula $C_5H_{10}O$, che non reagisce con il reattivo di Fehling e per riduzione con $NaBH_4$ ridà lo stesso composto X di partenza. Indicare quale tra le seguenti è la struttura del composto X.

$$\begin{array}{c|ccccc} OH & OH & OH & OH \\ \hline & & & \\ A & & B & C & D \end{array}$$

56. Quale delle seguenti reazioni non può portare alla formazione di un estere

Reazione 1: alogenuro acilico e alcol in presenza di una ammina terziaria

Reazione 2: acido carbossilico e alcol in presenza di un acido forte (acido solforico) in quantità catalitica Reazione 3: acido carbossilico e alogenuro alchilico secondario in presenza di una ammina terziaria Reazione 4: ammide e alcol ad alta temperatura

- A) reazione 1
- B) reazione 2
- C) reazione 4
- D) reazioni 3 e 4
- **57.** Quali delle seguenti aldeidi danno reazione di condensazione in condizioni acide?

- A) solo il composto 1
- B) composti 1 e 2
- C) composti 1, 2 e 3
- D) tutti i composti

58. Individuare il prodotto che si ottiene al termine della seguente sequenza di reazioni.

59. Qual è il prodotto principale della seguente reazione?

60. Qual è il prodotto più probabile della seguente serie di reazioni?

6

SCI – Società Chimica Italiana Digitalizzato da Mauro Tonellato