

2009 U. S. NATIONAL CHEMISTRY OLYMPIAD

LOCAL SECTION EXAM

Prepared by the American Chemical Society Olympiad Examinations Task Force

OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, State University of New York, Cortland, NY Chair

James Ayers, Mesa State College, Grand Junction, COPaul Groves, South Pasadena HS, South Pasadena, CASherry Berman-Robinson, Consolidated HS, Orland Park, IL (retired)Preston Hays, Glenbrook South HS, Glenbrook, ILSeth Brown, University of Notre Dame, South Bend, INDavid Hostage, Taft School, Watertown, CTPeter Demmin, Amherst HS, Amherst, NY (retired)Adele Mouakad, St. John's School, San Juan, PRMarian Dewane, Centennial HS, Boise, IDJane Nagurney, Scranton Preparatory School, Scranton, PAValerie Ferguson, Moore HS, Moore, OKRonald Ragsdale, University of Utah, Salt Lake City, UTKimberly Gardner, US Air Force Academy, Colorado Springs, COPaul Groves, South Pasadena HS, South Pasadena, CA

DIRECTIONS TO THE EXAMINER

This test is designed to be taken with an answer sheet on which the student records his or her responses. All answers are to be marked on that sheet, not written in the booklet. Each student should be provided with an answer sheet and scratch paper, both of which must be turned in with the test booklet at the end of the examination. Local Sections may use an answer sheet of their own choice.

The full examination consists of 60 multiple-choice questions representing a fairly wide range of difficulty. Students should be permitted to use non-programmable calculators. A periodic table and other useful information are provided on page two of this exam booklet for student reference.

Suggested Time: 60 questions – 110 minutes

DIRECTIONS TO THE EXAMINEE

DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO.

This is a multiple-choice examination with four choices for each question. There is only *one* correct or best answer to each question. When you select your choice, blacken the corresponding space on the answer sheet with your pencil. Make a heavy full mark, but no stray marks. If you decide to change your answer, be certain to erase your original answer completely.

Not valid for use as an ACS Olympiad Local Section Exam after March 31, 2009. STOCK CODE OL09

Distributed by the ACS DivCHED Examinations Institute, Iowa State University, Ames, IA.

All rights reserved. Printed in U.S.A.

	ABE	BREVIATIONS AND SY	MB	DLS		CONSTANTS
amount of substance ampere atmosphere atomic mass unit atomic molar mass Avogadro constant Celsius temperature centi– prefix coulomb electromotive force energy of activation enthalpy entropy equilibrium constant	n A atm u A N _A °C C C E E _a H S K	Faraday constant free energy frequency gas constant gram hour joule kelvin kilo– prefix liter measure of pressure mn milli– prefix molal	F G V R g h J K k L mHg m m	molar molar mass mole Planck's constant pressure rate constant reaction quotient second speed of light temperature, K time volt volume	$\begin{array}{c} M\\ M\\ mol\\ h\\ P\\ k\\ Q\\ s\\ c\\ T\\ t\\ V\\ V\\ V \end{array}$	$R = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ $R = 0.0821 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ $1 F = 96,500 \text{ C} \cdot \text{mol}^{-1}$ $1 F = 96,500 \text{ J} \cdot \text{V}^{-1} \cdot \text{mol}^{-1}$ $N_{\text{A}} = 6.022 \times 10^{23} \text{ mol}^{-1}$ $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$ $c = 2.998 \times 10^8 \text{ m} \cdot \text{s}^{-1}$ $0 ^{\circ}\text{C} = 273.15 \text{ K}$

	EQUATIONS	
$E = E^{\circ} - \frac{RT}{nF} \ln Q$	$\ln K = \left(\frac{-\Delta H}{R}\right) \left(\frac{1}{T}\right) + \text{ constant}$	$\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$

	DEDIODIC TARLE OF THE ELEMENTS											10					
1			Г	EN	UD		IAD		Or								18
1A																	8A
1																	2
Н	2											13	14	15	16	17	He
1.008	2A											3 A	4 A	5A	6A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											B	Č	Ň	Ŏ	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Р	S	Cl	Ar
22.99	24.31	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub		Uuq				
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)		(2??)				
		58	50	60	61	62	63	64	65	66	67	68	60	70	71		

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

				DIRECT	IONS						
• •	When pencil	you have selected your . Make a heavy, full man	answe k, but	r to each question, blacken no stray marks. If you decide	the cor de to cl	respo hange	onding spa e an answ	ace on the answer, erase the u	wer she nwante	et using d mark v	a soft, #2 ery carefully.
- 1	be co	unted.	erto	each question. Any question	IS IOF W	men	more that	n one response	e nas de	een black	ened will not
•	Your	score is based solely on	he nu	mber of questions you answ	er corr	ectly	. It is to y	our advantag	ge to a	nswer ev	ery question.
1.	Wh	tich salt is colorless?		D (0)	7.	The Wha	mass of c at is the at	one atom of an tomic mass of	eleme this ele	nt is 1.71 ement in	×10 ⁻²² g. g·mol ⁻¹ ?
	(A) (C)	$KMnO_4$ Na ₂ CrO ₄	(D) (B)	BaSO ₄		(A)	101	(B) 103	(C)	105	(D) 107
2.	Whi	ich 0.10 M aqueous solu trical conductivity?	tion ex	whibits the lowest	8.	Wha carb	at is the poonate, (N	ercent by mass $(H_4)_2 CO_3?$	s of nit	rogen in a	ammonium
	(A)	NH₄Cl	(B)	CuBr ₂		(A)	14.53%		(B)	27.83%	
	(C)	Na ₂ CO ₃	(D)	C ₂ H ₅ OH		(C)	29.16%		(D)	33.34%	
3.	Whi	ich element is a liquid at	25°C	and 1 atm?	9.	9. How many moles of water will be produced from complete combustion of 4.4 g of C_3H_8 ?				l from the	
	(A)	fluorine	(B)	chlorine		(A)	0.10	(B) 0.25	(C)	0.40	(D) 0.80
	(C)	bromine	(D)	iodine	10.	A 10	0.0 g sam	ple of an oxide	e of co	pper form	s metallic
4.	4. Mixing which combination produces a gaseous product?					copp	per and 1.	26 g of water	when h	ieated in	a stream of
	(A)	(A) solid ammonium nitrate and solid calcium hydroxide				oxid	le?	hat is the mass	percer	n or copp	der mit uns
	(B)	copper metal and 0.10	M hyd	rochloric acid		(A)	11.2%	(B) 66.6%	(C)	79.9%	(D) 88.8%
	(C)	solutions of barium hyc	lroxid	e and 0.10 M sulfuric	11.	A 49	9.9 g sam	ple of barium	Molar Mass / g·mol ⁻¹		
	(D)	solutions of aluminum	nitrate	and sodium chloride		hydi Ro((roxide oct	tahydrate,	Ba($OH)_2 \cdot 8H$	$_{2}O$ 315
5.	Whi	ich technique can be use ponents in a plant pigme	d to de ent?	etermine the number of		$Ba(OH)_2 \cdot 8H_2O$, is dissolved in water and the solution is diluted to give a final volume of 2.50 L. What is the concentration of the hydroxide ion in this solution?					
	(A)	calorimetry	(B)	chromatography		(A)	0.0634 N	Ν	(B)	0.127 N	1
	(C)	colorimetry	(D)	gravimetry		(C)	0.190 M		(D)	0.634 N	1
6.	In th titra erro actu	ne determination of the n ting it with a standardize r will yield a molar mass al value?	nolar i ed base s that i	nass of a solid acid by e, which procedural s smaller than the	12.	Wha need hydr	at volume led to titra roxide sol 3Ba(0	(in mL) of 0.0 ate completely lution to a phenomena $OH_2 + 2H_3PO$	0500 N 25.0 r nolphtl $0_4 \rightarrow \text{Ba}$	1 phosphon nL of 0.1 nalein end $_{3}(PO_{4})_{2}$ +	oric acid is 50 M barium 1 point? - 6H ₂ O
	(A)	adding the standardized drops of water	l base	to a buret containing		(A)	50.0	(B) 75.0	(C)	100.	(D) 150.
	(B)	dissolving the weighed recommended volume	solid of wat	acid in twice the er	13.	A sa volu is th cons	ample of game of V_{1} , where V_{1} is a volume stant.)	gas at 273 K has When the pre V_2 ? (Assume	as a pro essure i the ten	essure of s changed perature	P_1 and a d to P_2 , what remains
	(C) (D)	using han as many diop		manded mass of solid		(A)	P_1P_2		(B)	P_1V_1	
	(D)	acid	1000	minenueu mass of some		-	$\overline{V_1}$			P_2	
						(C)	$\frac{P_2V_1}{P_1}$		(D)	$\frac{P_2}{P_1V_1}$	

- **14.** How do the number of molecules, *n*, in 1.0 L of each of the following gases; CH₄, N₂, CO₂, compare at 1 atm and 25 °C?
 - (A) $n_{\text{CH}_4} < n_{\text{CO}_2} < n_{\text{N}_2}$ (B) $n_{\text{N}_2} < n_{\text{CO}_2} < n_{\text{CH}_4}$ (C) $n_{\text{CO}_2} < n_{\text{CH}_4} < n_{\text{N}_2}$ (D) $n_{\text{CH}_4} = n_{\text{CO}_2} = n_{\text{N}_2}$
- **15.** Solid sodium acetate, $NaC_2H_3O_2$, is what type of solid?
 - (A) ionic (B) metallic
 - (C) molecular (D) network covalent
- 16. Which substance has the highest vapor pressure at 25° C?
 - (A) methanol, CH_3OH
 - (**B**) ethanol, CH_3CH_2OH
 - (C) 1-propanol, CH₃CH₂CH₂OH
 - **(D)** 1-butanol, $CH_3CH_2CH_2CH_2OH$
- **17.** Which point on the phase diagram represents the normal boiling point?

(D) 5.0

- (A) point A (B) point B
- (C) point C (D) point D
- 18. What types of intermolecular forces are exerted by CH₃Cl molecules in the liquid phase?
 I. dipole-dipole forces
 II. hydrogen bonding
 III. London dispersion forces
 - (A) I only (B) II only
 - (C) I and III only (D) II and III only
- **19.** A 22.0 g piece of metal is heated to 100.0°C and placed in 75.0 g H_2O 4.18 H_2O at 25.0°C. If the final temperature of the metal and water is 27.8°C, what is the specific heat capacity of the metal in J·g^{-1.°}C⁻¹? (Assume no heat is lost/gained by the surroundings.)

(A) 0.038 **(B)** 0.16

- 0.16 (C) 0.55
- 20. Which change(s) is(are) accompanied by an increase in entropy of the system?
 (A) I only
 1. conversion of O₂(g) to O₃(g)
 II. freezing of water
 III. sublimation of iodine
 (B) III only
 - (C) I and II only (D) II and III only

- **21.** NO(g) $\rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ ΔH_1° 2NO(g) $\rightarrow N_2O(g) + \frac{1}{2}O_2(g)$ ΔH_2° Which relationship is correct?
 - (A) $\Delta H_1^{\circ} = \Delta H_2^{\circ}$
 - **(B)** $\Delta H_{\rm f}^{\circ}$ for NO(g) = $\Delta H_{\rm 1}^{\circ}$
 - (C) $\Delta H_{\rm f}^{\circ}$ for N₂O(g) = $\Delta H_{\rm 2}^{\circ}$
 - **(D)** $\Delta H_{\rm f}^{\circ}$ for N₂O(g) = $\Delta H_{\rm 2}^{\circ} 2\Delta H_{\rm 1}^{\circ}$
- **22.** When 2.74 g of Ba(s) reacts with $O_2(g)$ at 298 K and 1 atm to form BaO(s), 11,100 J of heat is released. What is ΔH_f° for BaO(s) in kJ·mol⁻¹?
 - (A) 556 (B) 221 (C) -221 (D) -556
- **23.** A reaction has $\Delta H^{\circ} > 0$ and $\Delta G^{\circ} > 0$ at 25°C. This reaction
 - (A) is at equilibrium at 25° C.
 - (B) could not be spontaneous under standard conditions at any temperature.
 - (C) could be spontaneous under standard conditions at temperatures above 25°C.
 - **(D)** could be spontaneous under standard conditions at temperatures below 25°C.
- 24. An ionic compound has a solubility of 1 mol·L⁻¹ in water at 25 °C and its solubility increases as the temperature is raised. What are the signs of ΔH° and ΔS° for the dissolving process?

	ΔH°	ΔS°
(A)	+	+
(B)	+	_
(C)	_	+
(D)	_	_

25. For the reaction represented by the accompanying diagram, which reaction rate is the greatest?

- (A) average rate
- (**B**) final rate
- (C) initial rate
- (**D**) rate at 20 seconds
- 26. Which units are appropriate for a reaction rate?
 - (A) $\operatorname{mol} \cdot L^{-1} \cdot s^{-1}$ (B) $\operatorname{mol} \cdot L^{-1}$
 - (C) $\operatorname{mol} \cdot L \cdot s^{-1}$ (D) $L \cdot \operatorname{mol}^{-1} \cdot s^{-1}$

27. What is the rate equation for a reaction,

A + B → produ	cts, based on the	e rate dat
[A] _o , mol·L ⁻¹	[B]₀, mol·L ⁻¹	Rate
0.15	0.10	Х
0.30	0.20	4x
0.30	0.40	16x
	2	

- (A) Rate = $k[A]^2$ (B) Rate = $k[B]^2$
- (C) Rate = k[A][B] (D) Rate = $k[A][B]^2$
- **28.** The effect of temperature on the rates of chemical reactions is primarily a result of the
 - (A) size of the colliding molecules.
 - (B) orientation of the colliding molecules.
 - (C) enthalpies of the reactants and products.
 - (D) kinetic energies of the colliding molecules.
- **29.** The value of the rate constant for a gas phase reaction can be changed by increasing the
 - (A) amount of product.
 - (B) pressure of the reactant.
 - (C) temperature of the reaction vessel.
 - (**D**) volume of the reaction vessel.
- **30.** What is the half life of the irreversible first order reaction, A → B, if 75% of A is converted to B in 60 minutes?
 - (A) 30 minutes (B) 45 minutes
 - (C) 60 minutes (D) 80 minutes
- **31.** What is the K_{eq} expression for the reaction, $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$?

(A)
$$K_{eq} = \frac{2[CO]}{[CO_2]}$$
 (B) $K_{eq} = \frac{2[C][CO]}{[CO_2]}$
(C) $K_{eq} = \frac{[CO]^2}{[CO_2]}$ (D) $K_{eq} = \frac{[C][CO]^2}{[CO_2]}$

- **32.** The equilibrium system $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ has $K_p = 11$ and $\Delta H^\circ = 57 \text{ kJ} \cdot \text{mol}^{-1}$ at 25 °C. Which action will **not** cause a change in the position of the equilibrium?
 - (A) increasing the temperature
 - (B) adding $NO_2(g)$
 - (C) adding xenon gas to increase the pressure
 - (D) increasing the container volume

- 33. Which is not a conjugate acid/base pair?
 - (A) $H_2CO_3 \& CO_3^{2-}$ (B) $HSO_4^- \& SO_4^{2-}$ (C) $H_2PO_4^- \& HPO_4^{2-}$ (D) $H_3O^+ \& H_2O$
- **34.** What is the $[OH^-]$ in an aqueous solution which has a pH = 11.70?
 - (A) 7.1×10^{-2} M (B) 5.0×10^{-3} M
 - (C) 1.4×10^{-6} M (D) 2.0×10^{-12} M
- **35.** Equal volumes of 0.25 M HNO_2 and 0.25 M HNO_3 are titrated separately with 0.25 M KOH. Which would be the same for both titrations?
 - (A) initial pH
 - (B) pH halfway to the equivalence point
 - (C) pH at the equivalence point
 - (D) pH when 5 mL excess KOH has been added
- **36.** For which salt is the molar solubility, s, equal to 4×10^{-6} M?
 - (A) $AgC_2H_3O_2$ $K_{sp} = 2 \times 10^{-3}$
 - **(B)** TlBr $K_{\rm sp} = 4 \times 10^{-6}$
 - (C) MnCO₃ $K_{sp} = 2 \times 10^{-11}$
 - **(D)** $Zn(OH)_2$ $K_{sp} = 3 \times 10^{-17}$
- **37.** Which substance can act only as a reducing agent?
 - (A) I_2 (B) BrCl (C) NaBr (D) HIO₄
- **38.** When the equation $\operatorname{Sn}^{2+}(\operatorname{aq}) + \operatorname{IO}_3^-(\operatorname{aq}) + \operatorname{H}^+(\operatorname{aq}) \to \operatorname{Sn}^{4+}(\operatorname{aq}) + \operatorname{I}_2(\operatorname{aq}) + \operatorname{H}_2O(\operatorname{l})$ is balanced, what is the $\operatorname{Sn}^{2+}(\operatorname{aq}) / \operatorname{IO}_3^-(\operatorname{aq})$ mole ratio?
 - (A) 1/1 (B) 2/1 (C) 1/2 (D) 5/2
- **39.** Given the standard reduction potentials, which statement is correct?

$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	$E^{\circ} = 0.34 \text{ V}$
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	$E^{\circ} = 0.00 \text{ V}$
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \to \operatorname{Cr}(s)$	$E^{\circ} = -0.73 \text{ V}$

- (A) Cr(s) will react with acid.
- (B) Cu(s) will react with acid.
- (C) $Cu^{2+}(aq)$ will react with acid.
- **(D)** Cu(s) will react with $Cr^{3+}(aq)$.

40. Use the standard reduction potentials given to calculate the standard potential for the reaction;

	Pb(s)) + 2A	Ag+(aq) ·	$\rightarrow Pb^{2+}$	(aq) + 2A	Ag(s)	
Ag^+	$(aq) + e^{-}$	→Ag	(s)	$E^{\circ} = 0$.80 V		
Pb ²⁺	$(aq) + 2e^{-1}$	→ Pł	b (s)	$E^{\circ} = -$	0.13 V		
(A)	1.73 V	(B)	0.93 V	(C)	0.67V	(D)	0.54 V

41. For the voltaic cell represented,

 $Ni(s) Ni^{2+}(aq) Ag^{+}(aq) Ag(s)$

which change will increase the cell potential?

- (A) increasing the $[Ag^+]$ (B) increasing the $[Ni^{2+}]$
- (C) adding Ni(s) (D) removing Ag(s)
- **42.** The deposition of 1.0 g of which element from its molten chloride requires the shortest time at a current of 1 A?
 - (A) Na (B) Mg (C) Al (D) Ba
- **43.** Which properties of electromagnetic radiation are inversely related?
 - (A) amplitude and frequency
 - (B) energy and wavelength
 - (C) energy and frequency
 - (D) wavelength and amplitude
- **44.** Which electronic transition in a hydrogen atom releases the greatest amount of energy?
 - (A) $n = 3 \rightarrow n = 2$ (B) $n = 5 \rightarrow n = 3$
 - (C) $n = 6 \to n = 5$ (D) $n = 3 \to n = 6$
- 45. Which must represent an atom in an excited state?

(A)	$1s^22s^22p^1$	(B)	$1s^22s^22p^2$
(C)	$1s^22s^22p^23s^1$	(D)	$1s^22s^22p^5$

46. Which quantum numbers represent the orbitals being filled in the ground state for the elements Sc (21) to Zn (30)?

(A)	n = 3, l = 1	(B)	n=3, l=2
(C)	n = 4, l = 1	(D)	n = 4, l = 2

47. Which pair consists of species that are isoelectronic?

(A)	Na^+, K^+	ŀ	(B)	Cl, Cl⁻
	-	_		

(C) Fe^{2+} , Mn^{2+} (D) Ar, Ca^{2+}

48. In which series are the species listed in order of increasing size?

(A)	N, O, F	(B)	Na, Mg, K
(C)	Cr, Cr^{2+}, Cr^{3+}	(D)	$C1, C1^-, S^{2-}$

49. In which molecule does the chlorine have the most positive partial charge?

(A) HCl (B) BrCl (C) OCl₂ (D) SCl₂

50. Which molecule contains the shortest carbon-carbon bonds?

(A) C_2H_2 (B) C_2H_4 (C) C_3H_8 (D) C_6H_{12}

51. How many valence electrons are in one ion of thiosulfate, $S_2O_3^{2-}$?

(A) 26 (B) 28 (C) 30 (D) 32

52. Which substance has the highest melting point?

(A) CO (B)
$$CO_2$$
 (C) SiO_2 (D) P_2O_5

- **53.** Which species has exactly five pairs of electrons around the central atom?
 - (A) ClF_5 (B) SF_4 (C) SF_5^- (D) XeF_4
- 54. What are the hybridizations of the carbon atoms labeled C_1 and C_2 , respectively, in glycine?

$$C_1$$
 C_2

- $(\mathbf{A}) \quad \mathbf{sp}^2 \qquad \mathbf{sp}^2$
- **(B)** sp^2 sp^3
- (C) sp^3 sp^2
- **(D)** sp^3 sp^3
- **55.** The formula, H₃CCOCH₃, represents a(n)
 - (A) aldehyde. (B) ester.
 - (C) ether. (D) ketone.
- 56. Which suffix is used to designate a carbohydrate?
 - (\mathbf{A}) -ase (\mathbf{B}) -ate (\mathbf{C}) -one (\mathbf{D}) -ose
- 57. Which compound has the largest molar mass?
 - (A) hexane (B) 1-hexene
 - (C) 1-hexyne (D) benzene

58. Which functional group is not commonly found in proteins?

(A) alcoho	ol (B) aldehyde
------------	-------	------------

(C) amide (D) amine

60. The gentle oxidation of ethanol, CH₃CH₂OH, produces

- (A) ethanal, CH₃CHO.
- (**B**) ethanoic acid, CH_3CO_2H .
- (C) carbon monoxide, CO.
- (**D**) carbon dioxide, CO_2 .

END OF TEST

Olympiad 2009 Local Section

KEY

Number	Angwon	Number	Angwon	
Number	Allswer		Allswer	
1.	В	31.	C	
2.	D	32.	C	
3.	C	33.	Α	
4.	Α	34.	В	
5.	B	35.	D	
6.	Α	36.	С	
7.	B	37.	С	
8.	С	38.	D	
9.	С	39.	Α	
10.	D	40.	В	
11.	B	41.	Α	
12.	Α	42.	D	
13.	B	43.	В	
14.	D	44.	Α	
15.	Α	45.	С	
16.	Α	46.	В	
17.	D	47.	D	
18.	С	48.	D	
19.	С	49.	С	
20.	В	50.	Α	
21.	D	51.	D	
22.	D	52.	С	
23.	С	53.	В	
24.	Α	54.	С	
25.	С	55.	D	
26.	Α	56.	D	
27.	В	57.	Α	
28.	D	58.	В	
29.	С	59.	D	
30.	Ă	60.	Α	