(1 mark)

Na	ame of Student				Centre	
Prol	olem 1			13 Marks		
Che	mical Kinetics and R	Reaction	Rates			
	Nitric oxide [nitrogen (in mammals and as an pollution and is essention and it reflect the reaction stouth order reaction.	intermedial to main	ate in the pr tain the bloc itric oxide b	roduction of nod pressure. by oxygen, the	nitric acid. It has a	role in air
1.1	Predict two simple po	ssibilities	of the rate	law expressi	ing the rate (v), i	n terms of
	appropriate powers of t	the reactar	nt concentrat	tions.		
	v =		or	v =		
					(1 mark	∠)
1.2	With respect to the ra	te laws g	iven by you	ı, write the b	palanced chemical	equations
	assuming that they refl	ect reaction	n stoichiom	etry.		
	Chemically contains the above two i		tion from			
					(1.5 ma	rks)
1.3	Express the reaction rathe gaseous component				of concentration	of each of
	v =					

Two mechanisms are suggested for the correct stoichoimetric reaction.

1.4 Mechanism – 1
$$k_1$$

$$NO(g) + O_2(g) \quad \stackrel{\rightleftharpoons}{\rightleftharpoons} \quad NO_3 \ (g) \quad \text{(Fast pre-equilibrium)}$$

$$NO_3(g) + NO(g) \xrightarrow{k_2} 2NO_2(g)$$
 (Slow)

Use the equilibrium concentration of $[NO_3]$ (from the first step) to derive the rate law for the formation of $[NO_2]$.

(2 marks)

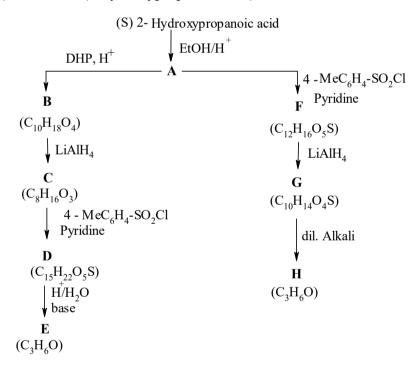
1.5 Mechanism - 2 k_1 $NO(g) + NO(g) \stackrel{\rightleftharpoons}{\rightleftharpoons} N_2O_2(g)$

$$N_2O_2(g) + O_2(g) \xrightarrow{k_2} 2 NO_2(g)$$
 (with very large value of k_{-1})

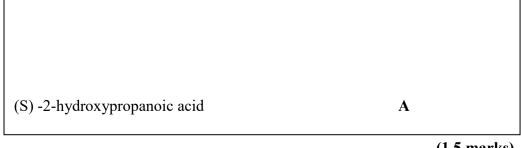
Steady state approximation is used for N_2O_2 (i.e. its rate of formation equals rate of consumption). Obtain the rate law within this approximation. State the assumption used.

(2 marks)

How will you experimentally compare the two mechanisms?				
L	(1 mark)			
]	The oxidation reaction $2NO(g) + O_2(g) \rightleftharpoons 2 NO_2(g)$ attains equilibrium at 230			
7	The concentrations of various species at equilibrium are found to be [NO] = $5.42 \times$			
N	M, $[O_2] = 12.7 \times 10^{-2}$ M, and $[NO_2] = 15.5$ M. Calculate the equilibrium constant (
C	of the reaction at this temperature.			
	-			
L				

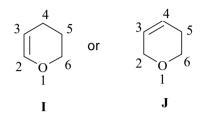

(1 mark)

Assume that all the gases involved in the react Calculate the change in internal energy of the r	
enthalpy change of the reaction at the given condition	011 IS -1 14.0 KJ.
	(1 mark)
Predict whether the entropy change (ΔS) of the pro-	ocess in 1.7 is positive, negative
zero, when the reaction proceeds to completion.	
	(0.5 mark)
The rate limiting step of a reaction which is ca	,
ionization of a weak acid, e.g. acetic acid) is H	
	-
regenerated in a subsequent rapid step. Considering	
weak acid, predict the dependence of the reaction ra	tile on the concentration of acid


Name of Student	Centre
Problem 2	16 marks

Pheromones - A Case of Sulcatol

The chemicals used by living organisms for intra-species communication are called "pheromones". They are secreted in minute quantities. Normally a specific stereoisomer only is active; the other stereomer/s may be inactive or even inhibitor. "Sulcatol" is an ambrosia beetle aggregation pheromone. It is active only as a 65:35 mixture of its enantiomers and hence the enantiomers are synthesized separately and mixed in right proportion. The use of readily available chiral natural products, called "chiral synthons", as starting compounds in the synthesis of complex chiral compounds is called "chiral pool strategy". (S)-lactic acid is one such chiral synthon. The enationers E and H of Sulcatol are prepared through stereospecific reactions from (S)-lactic acid (2-hydroxypropanoic acid), as shown below



2.1 Draw the structures of (S) 2-hydroxypropanoic acid and A.

(1.5 marks)

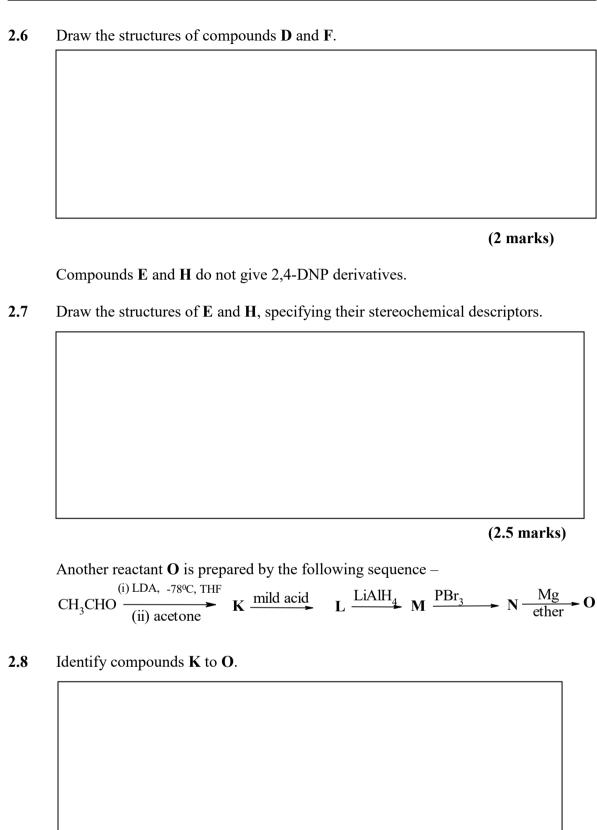
During a sequence of reactions, sensitive functional groups are often protected using "protective groups". Dihydropyran (DHP) is used to protect a hydroxyl group, as the corresponding THP derivative can be prepared easily and after the crucial reaction, can be hydrolyzed under mild acidic conditions to the hydroxyl derivative. The conversion $\mathbf{A} \rightarrow \mathbf{B}$ requires the involvement of such a step. Two isomeric dihydropyrans I and J exist.

2.2	which of them (I or J) would be suitable for the formation of DHP derivatives of	of
	cohols?	

	(0.5 mark)
Which position of the selected DHP would couple with –OH grou	p?
	(0.5 mark)

2.4	Draw	the	structures	of	com	pounds	В	and	C.
	Dian	UIIC	bulactares	01	COIII	pourius	_	ullu	•

2.3


(1.5 marks)

2.5 The role of pyridine in the conversion $A \rightarrow F$ is

(i)	to remove chloride ion from 4-Me-C ₆ H ₄ -SO ₂ Cl	
(ii)	to displace hydroxyl group	
(iii)	to increase nucleophilicity of hydroxyl group	
(iv)	to act as a weak nucleoplile	

(0.5 mark)

76

(3 marks)

5.45 (broad s, 1H). Besides these there is a additional broad peak, which disa on D_2O addition.	Q of S	Sulcatol.
The PMR data of compound M is given below: 1.62 (3H), 1.68(3H), 4.15 (5.45 (broad s, 1H). Besides these there is a additional broad peak, which disa on D_2O addition.	Draw	the structures of compounds P and Q .
The PMR data of compound M is given below: 1.62 (3H), 1.68(3H), 4.15 (5.45 (broad s, 1H). Besides these there is a additional broad peak, which disa		
The PMR data of compound \mathbf{M} is given below: 1.62 (3H), 1.68(3H), 4.15 (5.45 (broad s, 1H). Besides these there is a additional broad peak, which disa on D_2O addition.		
The PMR data of compound \mathbf{M} is given below: 1.62 (3H), 1.68(3H), 4.15 (5.45 (broad s, 1H). Besides these there is a additional broad peak, which disa on D_2O addition.		
The PMR data of compound \mathbf{M} is given below: 1.62 (3H), 1.68(3H), 4.15 (5.45 (broad s, 1H). Besides these there is a additional broad peak, which disa on D_2O addition.		
The PMR data of compound M is given below: 1.62 (3H), 1.68(3H), 4.15 (5.45 (broad s, 1H). Besides these there is a additional broad peak, which disa on D_2O addition.		
5.45 (broad s, 1H). Besides these there is a additional broad peak, which disa on D_2O addition.		(2 marks)
5.45 (broad s, 1H). Besides these there is a additional broad peak, which disa on D_2O addition.		
on D_2O addition.	The P	MD 1-4 F 1 M 1 1 - 1 1 1 1 (2) (211) 1 (2)(211) 4 1 7 (
	1110 1	TWIK data of compound \mathbf{M} is given below: 1.62 (3H), 1.68(3H), 4.15 (
Draw the structure of M and assign the chemical shifts to different protons.		
Draw the structure of M and assign the chemical shifts to different protons.	5.45 (broad s, 1H). Besides these there is a additional broad peak, which disappeared broad states a second state of the second states and second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states are second states as a second state of the second states are second states as a second state of the second states are secon
	5.45 (broad s, 1H). Besides these there is a additional broad peak, which disappeared broad states a second state of the second states and second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states are second states as a second state of the second states are second states as a second state of the second states are second states as a second state of the second states are second states are second states as a second state of the second states are second states as a second state of the second states are secon
	5.45 (on D ₂	broad s, 1H). Besides these there is a additional broad peak, which disar O addition.
	5.45 (on D ₂	broad s, 1H). Besides these there is a additional broad peak, which disar O addition.
	5.45 (on D ₂	broad s, 1H). Besides these there is a additional broad peak, which disar O addition.
	5.45 (on D ₂	broad s, 1H). Besides these there is a additional broad peak, which disar O addition.
	5.45 (on D ₂	broad s, 1H). Besides these there is a additional broad peak, which disar O addition.
1	5.45 (on D ₂	broad s, 1H). Besides these there is a additional broad peak, which disar O addition.
	5.45 (on D ₂	broad s, 1H). Besides these there is a additional broad peak, which disagonal or addition.

Na	ame of Student	Centre
Pro	blem 3	16 Marks
Sea	Water	
	In polar regions, life exists below the frozen crust of ice. On ocean is frozen and the ice floats on water.	Only the top layer of the
3.1	The density of ice differs from that of water because	
	(a) ice is a solid and water is a liquid	
	(b) hydrogen bonding exists only in water	
	(c) ice has an open cage-like structure	
	(d) ice is covalently bonded but water involves ionic bonding	
		(1 mark)
3.2	Sea water contains many salts such as halides and sulphate	es of sodium, potassium,
	magnesium, calcium etc. Hence, sea water freezes at a ten	nperature lower than the
	freezing point of pure water. The freezing point of a typical	l sample of sea water is
	−1.94°C at 1 atm. Calculate the boiling point of sea water at	1 atm.
	K_f (water) = 1.86 K molal ⁻¹ , K_b (water) = 0.51 K molal ⁻¹ .	
	Boiling point of pure water at 1 atm is 373.1 K	
	L	(2 marks)
3.3	The van't Hoff factor i is a measure of association.	
	$i = \frac{\text{no. of particles after association}}{}$	
	no. of particles before association	

(A) van't Hoff factor for 0.1 M aqueous	sodium chloride is	1.87. The van't Hoff
factor for 0.1 M magnesium sulphate is	expected to be	
(a) 1.87		
(b) 1.25		
(c) 1.92		(1 mark)
(B) In magnesium sulphate the ionic interaction	etion	
(a) is same as that observed in NaCl		
(b) is weaker than that observed in NaC	1	
(c) is stronger than that observed in NaC		
(d) is not responsible for the i value		
		(1 mark)

3.4 Sea water is a rich source of halides. However, the concentration of iodide is less than that of the other halides, as the iodide ions are absorbed by the sea weeds and stored as iodine. Iodine can be extracted from sea weeds. The distribution of iodine between two immiscible solvents is given by the distribution ratio (D), which is constant at a given temperature.

$$D = \frac{\text{Conc. of } I_2 \text{ in solvent 1}}{\text{Conc. of } I_2 \text{ in solvent 2}}$$

(A) One litre of an aqueous solution containing 0.127 g of iodine was shaken with 10 ml of CCl₄. Certain amount of iodine was extracted into the organic layer. The organic layer was found to be 0.0465 N with respect to iodine. If another extraction was performed with 10 mL of CCl₄, what mass of iodine will be left in water layer? Atomic mass of iodine is 127.

(2 marks)

3.5 In an attempt to desalinate sea water containing sodium, magnesium, calcium and potassium ions as the only cations, the total cation content of the sea water was estimated. 10 mL of a sample of sea water was diluted to 1L. The cations were replaced by hydrogen ions and the salts were converted to their corresponding mineral acids using the ion exchange resin zerolit 225. The exchange of ions increases with increase in the valency as well as the size of cations exchanged. 100 mL aliquot of the diluted sample was passed through the cation exchanger zerolit 225 and the sample

	lar mass of ca					
ne may obtain tot	tal cation cond	centration is	n terms that	of Ca ²⁺ o	r any of it	s salts.
Express the tot	al salt conten	t of sea wat	er in terms o	of g L ⁻¹ o	f CaCO ₃ .	
If the cations the first to com				ng dilute	(1.5 ma HCl, which	
				ng dilute	HCl, whic	ch woul
				ng dilute	`	ch woul
the first to com	e out of the ic	on exchange	e resin?		(0.5 m	ark)
the first to com	e out of the ic	on exchange	e resin?	q of the s	(0.5 m	ark) gram o
the first to com Total exchange	e out of the ic	the resin ze	e resin? erolit is 5 ecetermination	q of the s	(0.5 m	ark) gram o
the first to com Total exchange resin. If 4 g of	e out of the ic	the resin ze	e resin? erolit is 5 ecetermination	q of the s	(0.5 m	ark) gram o
the first to com Total exchange resin. If 4 g of	e out of the ic	the resin ze	e resin? erolit is 5 ecetermination	q of the s	(0.5 m	ark) gram o
the first to com Total exchange resin. If 4 g of	e out of the ic	the resin ze	e resin? erolit is 5 ecetermination	q of the s	(0.5 m	ark) gram o
the first to com Total exchange resin. If 4 g of	e out of the ic	the resin ze	e resin? erolit is 5 ecetermination	q of the s	(0.5 m	ark) gram o
the first to com Total exchange resin. If 4 g of	e out of the ic	the resin ze	e resin? erolit is 5 ecetermination	q of the s	(0.5 m	ark) gram o
) Total exchange resin. If 4 g of	e out of the ic	the resin ze	e resin? erolit is 5 ecetermination	q of the s	(0.5 m	ark) gram o

obtained from the exchanger required 32 mL of 0.05 M NaOH for exact

3.8	At a certain place sea water is found to be 0.6 M with respect to NaCl and 0.05	M with
	respect to MgCl ₂ . It is concentrated by a manufacturer of common salt to ge	et 4.8M
	solution with respect to NaCl and he wants to precipitate pure common salt by	passing
	HCl gas. What is the minimum volume of HCl in L at STP that must be pa	issed to
	initiate the salting out of NaCl from 1L of the solution? $(K_{sp} \text{ of NaCl} = 36)$	

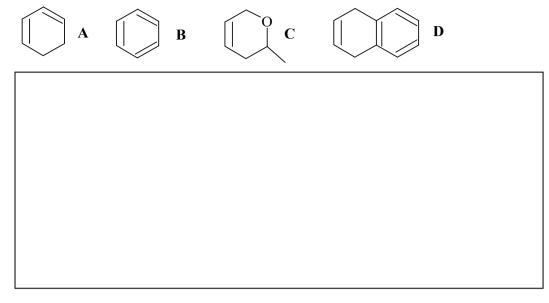
(3 marks)

Name of Student	Centre
Problem 4	21 marks


Cycloaddition Chemistry

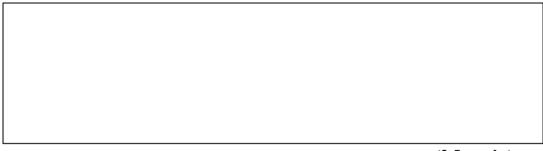
The Diels-Alder reaction is highly fascinating for synthetic organic chemists. Using this reaction one can build six membered carbocyclic and heterocyclic rings. The reaction has many interesting stereochemical dimensions. Otto Diels and Kurt Alder received Nobel Prize in 1950 for the discovery of this reaction. In this reaction, a conjugated diene reacts with a compound containing an activated multiple bond to form the adduct.

4.1 Draw the structures of all the possible products of the following reaction (No stereochemical features are to be shown)


(1.5 marks)

4.2 For any of the products in 4.1, draw the structures of the stereoisomers possible.

(1.5 marks)


4.3 A few molecules (**A-D**) are shown below. Identify the molecules which can be synthesized through one-step Diels-Alder reactions and draw the structures of the possible reactants/intermediates for each of them.

(4 marks)

A dicarboxylic acid \mathbf{E} (C₄H₄O₄) on reaction with bromine gives a dibromoderivative (C₄H₄Br₂O₄), which is optically inactive.

4.4 Identify E. Draw the structure/s, with stereochemistry, of the product/s of the reaction of E with cyclopentadiene.

(2.5 marks)

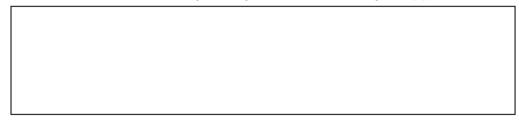
Compound ${\bf F}$ can be prepared through an intra-molecular Diels-Alder reaction of ${\bf G}$.

F

4.5 Draw the structure of compound **G**.

(1.5 marks)

Cantharidin (H) is a biomolecule isolated from a Spanish fly. I is the intermediate, which is prepared through a Diels-Alder reaction.


	H	
4.6	Draw the structures of the two components of the reaction leading to	I.

(2 marks)

4.7 Write the reagent which will convert **I** into cantharidin (**H**).

(1 mark)

4.8 Draw the structure of dimethyl 1,2-cyclobutene dicarboxylate (**J**).

(0.5 mark)

When **J** is heated with maleic anhydride (butenedioic anhydride), an unusual reaction takes place to form compound **K**. When **K** is boiled with aq. NaOH and the solution is acidified, compound **L** ($C_{10}H_{10}O_8$), which is optically inactive, is obtained. 1.0g of **L** reacts with 77.5 mL of 0.2 M NaOH.

4.9 Equivalent weight of compound L is (1 mark)

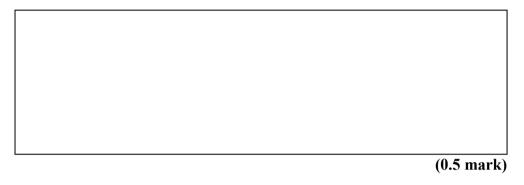
4.10 The number of –COOH groups present in compound L is

(0.5 mark)

	L is expected to contain	(Mark X for all the appropriate choic
	(i) cyclobutane ring	
	(ii) cyclohexane ring	
	(iii)open chain structure	
	(iv)one double bond	(1 mark)
	Draw a possible structure/s of com	pound L and compound K.
I		
		(2 marks)
	Draw the structure of a possible int	
	Draw the structure of a possible int	
		termediate in the reaction. (1 mark)
		rermediate in the reaction.
	L on heating forms M ($C_{10}H_6O_6$), v	(1 mark) which on reaction with N gives a polymer of NH ₂ N
	L on heating forms \mathbf{M} (C ₁₀ H ₆ O ₆), where $\mathbf{H}_{2}\mathbf{N}$	(1 mark) which on reaction with N gives a polymer of NH ₂ N
	L on heating forms \mathbf{M} (C ₁₀ H ₆ O ₆), where $\mathbf{H}_{2}\mathbf{N}$	(1 mark) which on reaction with N gives a polymer of NH ₂ N
	L on heating forms \mathbf{M} (C ₁₀ H ₆ O ₆), where $\mathbf{H}_{2}\mathbf{N}$	(1 mark) which on reaction with N gives a polymer of NH ₂ N
	L on heating forms \mathbf{M} (C ₁₀ H ₆ O ₆), where $\mathbf{H}_{2}\mathbf{N}$	(1 mark) which on reaction with N gives a polymer of NH ₂ N
	L on heating forms \mathbf{M} (C ₁₀ H ₆ O ₆), where $\mathbf{H}_{2}\mathbf{N}$	(1 mark) which on reaction with N gives a polymer of NH ₂ N

(2 marks)

Na	ame of Student	Centre
<u>Prob</u>	oblem 5	21 marks
Acet	etylene – Production, Structure & Uses	
	Acetylene is an important industrial gas. It is used as a furthe production of organic compounds such as acetaldehyd vinyl monomers. It has wide applications in neoprene rub industries.	de, acetic acid, acetone and ber and vinyl resin
	Acetylene gas can be produced using calcium carbide and following reaction	I water according to the
	$CaC_2 + 2H_2O$ \longrightarrow $C_2H_2 + Ca (OH)_2$	
	A commercial sample of calcium carbide is 97% pure (3% with water). Acetylene is stored in a cylinder at 101.3 kP	
5.1	What is the density of acetylene gas at the above condition	ns?
		(1 mark)
5.2	Calculate the amount of calcium carbide needed to product the above mentioned conditions?	ce 10m ³ of acetylene gas at


_	centage of water that is the mass of	in the slurry is 80%, final slurry?	what is the ma	acc of wester in
added and wl	hat is the mass of	final slurry?		iss of water if
		<u> </u>		
				(3 marks)
The standard	heats of formation	on (in kJ mol ⁻¹) of a	few compound	ds are given h
CH ₄ (g)	-74.4	$H_2O(l)$	-285.5	us are given e
$C_2H_2(g)$	228.2	$CO_2(g)$	-393.5	
(Ο)		nen 16 kg of methan		elv burnt in ex
		of acetylene is burn		- y
oxygen with		or acceptance is carrie	•	
oxygen with				
oxygen with				

$(CH_2 = C = CH_2)$ molecules.		
		(2 marks)
The C-H bond lengths in acetylene	, ethylene and ethane mole	cules are 1.059Å
Å and 1.093 Å respectively. This d	ifference may be attributed	to
a) decreasing p character on increas	sing unsaturation	
b) increasing p character with incre	easing unsaturation	
c) increasing s character with increa	asing unsaturation	
d) decreasing s character on increas	sing unsaturation	
		(1 mark)
Acetylene is soluble to a large exter	nt in acetone. This may be	attributed to the
interactions between acetone and acmore acidic?	cetylene. Which of the hyd	rogen is expecte
Hydrogen in the CH ₃ group of acet	one	
Hydrogen in acetylene		(0.5 mark
What are the molecules that have a	non zero dipole moment?	
acetylene	water	
		

The dipole moment vector of water may be represented by the following diagram with the arrow pointing in the direction of the negative charge.

Show the dipole moment vector of acetone.

One may now imagine the structure of the weakly bound 1:1 acetone – acetylene complex in their binary mixture. For this purpose you may consider the most acidic hydrogen interacting with the electron rich region of the other molecule. Draw the structure of such a complex indicating weak interactions with dotted lines.

(2 marks)

5.8 A catalyst has been developed for the conversion of acetylene into acetaldehyde. On the surface of the catalyst, the following reaction occurs

$$C_2H_2 + H_2O$$
 — cat \sim CH₃CHO

The products contain small amounts of H₂, O₂ and CH₃COOH. The following reactions are assumed to be responsible for these products.

$$H_2O \longrightarrow H_2 + \frac{1}{2} O_2$$

(2 marks)

Only a part of O	C ₂ H ₂ is consumed in the	reaction. In the final pr	oducts, the
	OH is found to be 15:1	and C ₂ H ₂ : CH ₃ CHO is	5:3. Calcu
percentage con	version of C ₂ H ₂ .		
			(3 ma
In the above ex	cample, in the final prod	ucts H_2 : O_2 is found to	
	cample, in the final producter initially supplied u		be 5:1. Wh
	_		be 5:1. Wh
	_		be 5:1. Wh
	_		be 5:1. Wh
	_		be 5:1. Wh

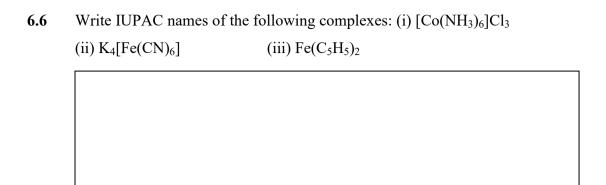
Na	me of Student Centre
<u>Prob</u>	lem 6 33 marks
Tran	sition Metal Chemistry
	The transition metals form complexes that involve central metal atom coordinated
	with ligands. The geometry of these complexes depends upon the number of ligands
	associated with the central metal atom. Hexacoordinate metal complexes normally
	prefer to have octahedral geometry.
6.1	For each of the following combinations of metal-ligands complexes, draw structures
	of the possible isomers. Mark optical isomers by (*). For each case, label the drawn
	structures with appropriate stereodescriptors (eg. cis, trans, mer, fac). For case (iii)
	name the relationship that exists between the isomers.
	(i) MX_4Y_2 (ii) MX_3Y_3 (iii) $M(en)_2X_2$ (en: ethylenediamine) Represent en by \cap

(7 marks)

One of the theories, viz, the valence bond theory (VBT), that explains bonding in coordination complexes was developed by Linus Pauling. It states that coordinate compounds contain complex ions in which ligands form coordinate bonds with the metal. The bond is formed by using a lone pair of electrons available on the ligand and an empty orbital of suitable energy available from the metal. This theory focuses on the atomic orbital from the metal that is used for bonding. It is useful in predicting shape and stability of the complex.

Also predict the hybridization and geometries for each complex. (i) Fe(CO) ₅ ii) Ni(CO) ₄	distribution	of electrons in th	ne base atom as	s well as centr	al metal aton	n in the cor
	Also predict	the hybridization	n and geometr	ies for each co	omplex.	
ii) Ni(CO) ₄	(i) Fe(CO) ₅					
(ii) Ni(CO) ₄						
(ii) Ni(CO) ₄						
(ii) Ni(CO) ₄						
(ii) Ni(CO) ₄						
(ii) Ni(CO) ₄						
(ii) Ni(CO) ₄						
(ii) Ni(CO) ₄						
(ii) Ni(CO) ₄						
(ii) Ni(CO) ₄						
(ii) Ni(CO) ₄						
	(ii) Ni(CO) ₄					
	(ii) Ni(CO) ₄					
	(ii) Ni(CO) ₄					
	(ii) Ni(CO) ₄					
	(ii) Ni(CO) ₄					
	(ii) Ni(CO) ₄					
	(ii) Ni(CO) ₄					
	(ii) Ni(CO) ₄					
	(ii) Ni(CO) ₄					
	(ii) Ni(CO) ₄					
	(ii) Ni(CO) ₄					

(4 marks)

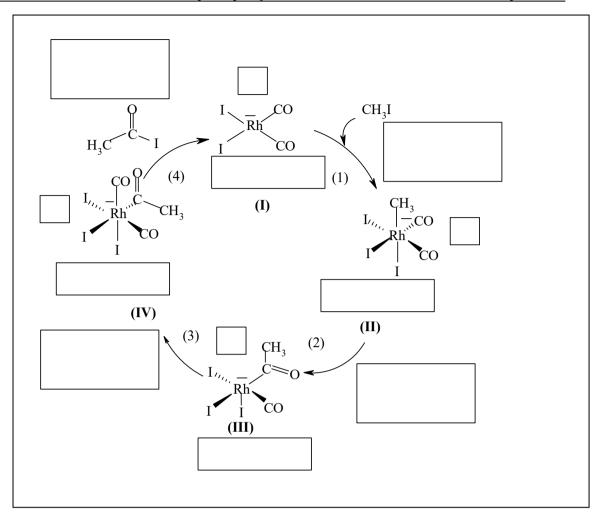

Though VBT was partly successful in predicting geometry, it has many limitations. For example, lack of obvious means of predicting whether a 4- coordinate complex will be tetrahedral or square planer. Crystal field theory (CFT) was developed by

		d
	spectra of the complexes. Depending on extent of d orbitals splitting, ligands are	e
	arranged in a sequence called as spectrochemical series. Generally the splitting patter	n
	observed is as follows: halide donor < oxygen donor < nitrogen donor < carbon donor	r.
6.3	Based on the above information, draw the splitting of d orbitals indicating th	e
	distribution of electrons for the central metals in the following complexes an	d
	calculate magnetic moment for paramagnetic complex/es.	
	(i) $K_4[Co(CN)_6]$ and (ii) $K_4[Co(ox)_3]$	
		1
	(4 marks)	
6.4	(4 marks) Consider the diamagnetic complex [M(en) ₃](ClO ₄) ₃ wherein M is a first row transitio	n
6.4	` '	n
6.4	Consider the diamagnetic complex [M(en) ₃](ClO ₄) ₃ wherein M is a first row transition	n
6.4	Consider the diamagnetic complex [M(en) ₃](ClO ₄) ₃ wherein M is a first row transitio metal. Answer the following questions for the given complex.	n

6.5

(2 marks)

iv) Whether this	complex will be	strong ox	idizing agen	t		
Yes		No				
State the reason	for your answer					
(v) Draw all nos	ssible stereoisome	ers of this	complex. (I	ndicate on	tically active	isome
by (*), if any			comprem (1	narease op	orderly desire	1501110
<i>oy (), ii aii j</i>						
					(6 mayles)	
From the follow	ring pair of oxides	s indicate	the number	of delect	(6 marks)	ıl meta
	cate which oxide					
		will be ee	noriess and	WIIICII WIII	be colored.	Lapiai
your answer in b						
(i) TiO ₂ and (ii)	Fe ₂ O ₃ .					


(3 marks)

6.7 In most of the organometallic transformations following reactions are known to occur:

(a) ligand substitution or dissociation, (b) oxidative addition, (c) reductive elimination, (d) migratory insertion, (e) electrocyclization. Based on these or some more fundamental reactions various catalytic cycles can be proposed. One such cycle for conversion of methanol to acetic acid is indicated below.

Rh cat.
$$\Gamma$$
CH₃OH + CO \longrightarrow CH₃CO₂H (overall)

The steps in this cycle are labeled as (1), (2), (3), and (4); the intermediate complexes are labeled as I, II, III, and IV. Mark each of these step, with the appropriate letter (a-e) from the above list indicating the nature of that step. Under each intermediate complex write the formal oxidation state and d electron configuration of the central metal (e.g. Mo(II) d4). Place an asterisk beside each co-ordinatively unsaturated ("16-electron") complex

(7 marks)

The following box	es may be used:
	To indicate optical activity by *
	To indicate metal oxidation state and number of d electrons
	To indicate the reaction name from a-e