

55th INTERNATIONAL CHEMISTRY OLYMPIAD 2023 UK Round One MARK SCHEME

Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

In general, 'error carried forward' (referred to as ECF) can be applied. We have tried to indicate where this may happen in the mark scheme and where ECF is not allowed.

For answers with missing or incorrect units, penalise one mark for the first occurrence in **each** question and write **UNIT** next to it. Do not penalise for subsequent occurrences in the same question.

Organic structures are shown in their skeletal form, but also accept displayed formulae as long as the representation is unambiguous.

State symbols are not required for balanced equations and students should not be penalised if they are absent.

No half marks are to be awarded. One blank tick box has been included per mark available for each part. Please mark by placing a tick in each box if mark is scored.

Question	1	2	3	4	5	Total
Marks Available	7	20	18	21	20	86

1.	This question is about rocket fuel	Mark				
(a)	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ State symbols not required Accept any multiple with correct stoichiometry e.g., $2H_2 + O_2 \rightarrow 2H_2O$	R				
(b)	+494 kJ mol ⁻¹ If the equation used is H ₂ + ½O ₂ → H ₂ O: $\Delta_r H = \sum_{bonds broken(reactants)} - \sum_{bonds formed (products)} -241 kJ mol-1 = [(432 + y) - (2 × 460)] kJ mol-1 y = [-241 - 432 + (2 × 460)] kJ mol-1 y = +247 kJ mol-1 (for ½ mole of O2) 1 mole of O=O is 2y = +494 kJ mol-1 If the equation used is 2H2 + O2 → 2H2O: \Delta_r H = \sum_{bonds broken(reactants)} - \sum_{bonds formed (products)} [2 × -241] kJ mol-1 = [(2 × 432) + y - (4 × 460)] kJ mol-1 y = [(2 × -241) - (2 × 432) + (4 × 460)] kJ mol-1 y = +494 kJ mol-1$					
(c)	35.2 mol 1 dm ³ = 1000 cm ³ Density (ρ) = mass (m) / volume (v) m(H ₂) = ρ v m(H ₂) = 0.071 g cm ⁻³ × 1000 cm ³ = 71 g n(H ₂)= m/M _r = 71 g / 2.016 g mol ⁻¹ = 35.2 mol					
	(ii) 8480 kJ Energy released = 35.2 mol × +241 kJ mol ⁻¹ = 8480 kJ					
(d)	(i) $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$	\mathbf{V}				
	(ii) Oxidation state of H in reactant 0 Oxidation state of C in reactant +4 Oxidation state of H in product +1 Oxidation state of C in product -4 All four oxidation states must be correct for the mark. + sign is not needed.	R				
(e)	$\begin{array}{c} -869.0 \text{ kJ} \\ & CH_{4(g)} + 2O_{2(g)} \xrightarrow{-890.8 \text{ kJ mol}^{-1}} CO_{2(g)} + H_2O_{(g)} \\ & + 8.2 \text{ kJ mol}^{-1} \\ & + (2 \times 6.8) \text{ kJ mol}^{-1} \end{array}$ $z = [+8.2 + (2 \times 6.8) + -890.8] \text{ kJ mol}^{-1} = -869.0 \text{ kJ mol}^{-1}, \text{ therefore } -869.0 \text{ kJ}.$ No penalty if final answer in kJ mol ⁻¹ . No marks if value given in wrong units.	R				
	Total out of 7	7				

2.	This question is about electronegativity, bonding and structure	Mark
(a)	0.962 $\chi_{Cl} - \chi_{H} = 0.102 \sqrt{427 - \frac{244 + 432}{2}}$ $\chi_{Cl} - \chi_{H} = 0.962$ The value should be positive, but accept if quoted as -0.962.	V
(b)	3.16 $\chi_{Cl} - \chi_{H} = 0.962$ $\chi_{Cl} = 0.962 + 2.20$ $\chi_{Cl} = 3.16$ ECF can be awarded from part (a). Answer to part (b) must be 2.20 more positive than answer to part (a). No marks are to be awarded for calculation that assumes Cl is less electronegative than H.	M
(c)	2.96 $\chi_N = 0.00197[E_i + E_{ea}] + 0.19$ $\chi_N = 0.00197[(14.5 \times 96.49) + 6.80] + 0.19$ $\chi_N = 2.96$	V
(d)	 (i) I (ii) E (iii) L (iv) G (v) J <i>All five correct scores two marks. Four or three correct scores one mark. Two, one or none correct scores no marks.</i> 	N
(e)	AIP Allow if they have written compound I. No ECF allowed if they have labelled one of the other five compounds in part (d) closer to the metallic corner of the triangle.	$\mathbf{\nabla}$
(f)	 (i) B (ii) N (iii) E One mark each 	N N N
(g)	(i) $H_3BO_3 + NH_3 \rightarrow BN + 3H_2O$ State symbols not required. Accept any multiple with correct stoichiometry.	

	(ii)	$B_2O_3 + 10N_2 + 3CaB_6 \rightarrow 20BN + 3CaO$	N					
		State symbols not required. Accept any multiple with correct stoichiometry.						
(h)	(i)	$4.78 \times 10^{-23} \text{ cm}^3$						
		volume of cube = $(side \ length)^3$						
		$v = a^3 = (3.63 \times 10^{-10} \text{ m})^3 = 4.78 \times 10^{-29} \text{ m}^3 = 4.78 \times 10^{-23} \text{ cm}^3$						
		No marks for answer in m^3 or Å as question asked for cm^3 .						
	(ii) B ₂ O ₃ + 10N ₂ + 3CaB ₆ → 20BN + 3CaO State symbols not required. Accept any multiple with correct stoichiometry. (i) 4.78 × 10 ⁻²³ cm ³ volume of cube = (side length) ³ v = a ³ = (3.63 × 10 ⁻¹⁰ m) ³ = 4.78 × 10 ⁻²⁹ m ³ = 4.78 × 10 ⁻²³ cm ³ No marks for answer in m ² or Å as question asked for cm ³ . (ii) 3.45 g cm ⁻³ Unit cell has 4 B and 4 N. (4 N completely within cube. 8 × ¹ / ₈ B on corners, 6 × ¹ / ₂ B on faces = 4 B). Mass of unit cell is 4(10.81+14.01) g mol ⁻¹ / 6.02 × 10 ²³ mol ⁻¹ = 1.649 × 10 ⁻²² g Density (p) = mass (m) / volume (v) = 1.649 × 10 ⁻²² g / 4.78 × 10 ⁻²³ cm ³ = 3.45 g cm ⁻³ Correct final answer scores full marks. First mark for correct number of B and N in unit cell. Second mark for correct mass of unit cell. Third mark for final answer. Allow EOF from part (h)(i). (iii) 3.74 × 10 ⁻²³ cm ³ area of regular hexagon = $\frac{3\sqrt{3}}{2}$ × (side length) ² area = $\frac{3\sqrt{3}}{2}$ × (1.47 × 10 ⁻¹⁰ m) ² = 5.614 × 10 ⁻²⁰ m ² = 5.614 × 10 ⁻¹⁶ cm ² volume of right prism = (area of base) × (height) v = 5.614 × 10 ⁻¹⁶ cm ² × 6.66 × 10 ⁻³ cm = 3.74 × 10 ⁻²³ cm ³ No marks for answer in m ³ or Å as question asked for cm ³ . (iv) 2.20 g cm ⁻³ Unit cell has 2 B and 2 N. (6 × ¹ / ₆ N on corners and 3 × ¹ / ₃ B on edges, making total of 2). (6 × ¹ / ₆ N on corners and 3 × ¹ / ₃ N on edges, making total of 2). Mass of unit cell is 2(10.81+14.01) g mol ⁻¹ / 6.02 × 10 ²³ mol ⁻¹ = 8.246 × 10 ⁻²³ g Density (p) = mass (m) / volume (v) = 8.246 × 10 ⁻²³ g / 3.74 × 10 ⁻²³ cm ³ = 2.20 g cm ⁻³ Correct final answer scores full marks. First mark for correct number of B and N in unit cell. Second mark for correct mass of unit cell. Third mark for final answer. Allow ECF from part (h)(ii). (v) Unit cell has 2 B and 2 N.							
		Unit cell has 4 B and 4 N.						
		(4 N completely within cube. 8 × $^{1}/_{8}$ B on corners, 6 × $^{1}/_{2}$ B on faces = 4 B).						
		Mass of unit cell is 4(10.81+14.01) g mol ⁻¹ / $6.02 \times 10^{23} \text{ mol}^{-1} = 1.649 \times 10^{-22} \text{ g}$						
		Density (ρ) = mass (m) / volume (v)						
		= 1.649×10^{-22} g / 4.78×10^{-23} cm ³ = 3.45 g cm ⁻³						
		Correct final answer scores full marks. First mark for correct number of B and N in unit cell. Second mark for correct mass of unit cell. Third mark for final answer. Allow ECF from part (h)(i).						
	(iii)	3.74 × 10 ⁻²³ cm ³						
		area of regular hexagon = $\frac{3\sqrt{3}}{2} \times (side \ length)^2$						
		area = $\frac{3\sqrt{3}}{2}$ × (1.47 × 10 ⁻¹⁰ m) ² = 5.614 × 10 ⁻²⁰ m ² = 5.614 × 10 ⁻¹⁶ cm ²	$\mathbf{\nabla}$					
		$v_{01} = 5.614 \times 10^{-16} \text{ cm}^2 \times 6.66 \times 10^{-8} \text{ cm} = 3.74 \times 10^{-23} \text{ cm}^3$						
		$V = 5.614 \times 10^{-10} \text{ cm}^2 \times 6.66 \times 10^{-6} \text{ cm} = 3.74 \times 10^{-23} \text{ cm}^3$						
		No marks for answer in m° or A as question asked for cm°.						
	(iv)	2.20 g cm ⁻³						
		Unit cell has 2 B and 2 N.						
		$(6 \times \frac{1}{6} B \text{ on corners and } 3 \times \frac{1}{3} B \text{ on edges, making total of 2}).$	$\mathbf{\Lambda}$					
		$(6 \times \frac{1}{6} \text{ N on corners and } 3 \times \frac{1}{3} \text{ N on edges, making total of 2}).$						
		Mass of unit cell is $2(10.81+14.01)$ g mol ⁻¹ / 6.02×10^{23} mol ⁻¹ = 8.246×10^{-23} g						
		Density (ρ) = mass (m) / volume (v)						
		$= 8.246 \times 10^{-23} \text{ g} / 3.74 \times 10^{-23} \text{ cm}^3 = 2.20 \text{ g cm}^{-3}$						
		Correct final answer scores full marks. First mark for correct number of B and N in unit cell. Second mark for correct mass of unit cell. Third mark for final answer. Allow ECF from part (h)(iii).						
	(v)	Unit cell has 2 B and 2 N.						
		(1 B completely within unit cell, $4 \times \frac{1}{12}$ and $4 \times \frac{2}{12}$ B on corners, making total of 2).						
		(1 N completely within unit cell, 2 × $^{1}/_{6}$ and 2 × $^{2}/_{6}$ N on edges, making total of 2).						
		Both must be correct for the mark.						
		Total out of 20	20					

4.	This question is about vaping							Mark
(a)	(i)	Nitrile One mark eac	Alcohol	Ester ✓ for each inco	Ketone	Ether ✓ down to zero	Carboxylic Acid	N
	(ii)	31 Full formula is	C ₃₁ H ₅₂ O _{3.}					
(b)		Structure	Is mass sp	this structure pectrometry?	consistent wit …¹H NM ✓ ✓	th the data fro	om ¹³ C NMR? ✓ ✓ ✓	K K K
(c)	One a One isor thre alke	e mark for each for Idehyde/ketone Udehyde/ketone H H H M H H H H H H H H H H H H H H H	fully correct c phospho Ph ₃ P- the first alke cond alkene p to get the ma	ene product the steener.	m m ere is no diffe ereochemistry nt does not ha	ajor alkene p	roduct	N N

(g)	3.46 × 10 ⁻	⁻² mol dm ⁻	-3					
	Labelling the total concentration as c_{tot} , we have the two equations							
	$\left[\operatorname{CO}_{2(\operatorname{ch})}\right] + \left[\operatorname{HCO}_{3(\operatorname{ch})}^{-}\right] = c_{tot} \text{and} \frac{\left[\operatorname{H}_{(\operatorname{ch})}^{+}\right]\left[\operatorname{HCO}_{3(\operatorname{ch})}^{-}\right]}{\left[\operatorname{CO}_{2(\operatorname{ch})}\right]} = K$							
	We use the first equation to express $[HCO_{3(ch)}^{-}] = c_{tot} - [CO_{2(ch)}]$ and substitute this into the second equation as							
	$\frac{[H_{(ch)}^{+}](c_{tot} - [CO_{2(ch)}])}{[CO_{2(ch)}]}$							
	With $\left[H_{(ch)}^{+} \right]$	$] = 10^{-p}$	$^{\rm H} = 10^{-5.2}$	$^{\circ}$ mol dm ⁻³ , this	rearranges to give	;		
		$\left[CO_{2(ch)} \right]$	$= \frac{c_{tot}}{1 + \frac{K}{[H_{(ch)}^+]}}$	$\frac{1}{[0]} = \frac{3.70 \times 10^{-2}}{1 + \frac{4.47 \times 10^{-2}}{10^{-5.20}}}$	$\frac{\text{mol dm}^{-3}}{\frac{7 \text{ mol dm}^{-3}}{\text{mol dm}^{-3}}} = 3.46$	× 10 ⁻² n	nol dm ⁻³	
	Full credit [H ⁺ _(ch)] in t	for correcter forms of pl	et concentr H.	ation of CO_2 in c	heese. One mark	for corre	ectly expressing	
(h)		$k_{\rm H}V_{\rm ch}p_{\rm b}$	$\frac{4\pi r^3 p_{\rm b}}{3RT}$	$\frac{4\pi r^3 p_{\rm b}}{3RT} K \cdot 10^{\rm pH}$	$K \cdot 10^{\mathrm{pH}} k_{\mathrm{H}} V_{\mathrm{ch}} p_{\mathrm{b}}$	$\frac{V_{\rm ch}p_{\rm b}}{3RT}$	$K \cdot 10^{-\mathrm{pH}} k_{\mathrm{H}} V_{\mathrm{ch}} p_{\mathrm{b}}$	
	$n_{\rm CO_{2(g)}}$		\checkmark					
	$n_{\rm CO_{2(ch)}}$	\checkmark						
	$n_{ m HCO}^{ m 3(ch)}$				\checkmark			
	One mark for every correct identification. How the expressions are derived is explained							
	For $CO_{2(q)}$ the ideal gas law states $pV = nRT$, which rearranges to							
	$n_{\text{CO}_{2(g)}} = \frac{pV}{RT} = \frac{4\pi r^3 p_b}{3RT}$							
	For $CO_{2(ch)}$, $n_{CO_{2(ch)}} = [CO_{2(ch)}] \cdot V_{ch}$, which combined with Henry's law gives $n_{CO_{2(ch)}} = k_H V_{ch} p_h$							
	For $HCO_3^{-}_{(ch)}$ rearrange the expression for the acid dissociation constant as							
	$n_{HCO_{3(ch)}} = \left[HCO_{3(ch)}\right] \cdot V_{ch} = K \frac{\left[CO_{2(ch)}\right] \cdot V_{ch}}{\left[H_{ch}^{+}\right]} = K \cdot 10^{pH} k_{H} V_{ch} p_{b}$							
)				(,	L (0//)	π		
,			$a = k_{\rm H}$	$V_{\rm ch}(1+K\cdot 10^{\rm pr})$	b) and $b = \frac{1}{3}$	RT		
	One mark Working (each for (not require	correct exp ed of stude	pression for a an	d <i>b</i> .			
	$\eta =$	$n_{CO_{2(ch)}} + 1$	$n_{HCO_{3(ch)}}$ +	n _{CO_{2(g)}}				
		1 - 2	$= k_H V_{ch} ($	$p_{atm} + \frac{\gamma}{r} + K \cdot$	$10^{pH}k_H V_{ch} \left(p_{atm}\right)$	$+\frac{\gamma}{r}+\frac{4}{2}$	$\frac{\pi r^3}{RT} \left(p_{atm} + \frac{\gamma}{r} \right)$	
	we can collect the terms as							
	$\left(k_H V_{ch} + K \cdot k_H V_{ch} \cdot 10^{pH} + \frac{4\pi r^3}{3RT}\right) \left(p_{atm} + \frac{\gamma}{r}\right) = \eta$							
				4.0				