

55 ${ }^{\text {th }}$ INTERNATIONAL

CHEMISTRY OLYMPIAD

2023

UK Round One

MARK SCHEME

Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

In general, 'error carried forward' (referred to as ECF) can be applied. We have tried to indicate where this may happen in the mark scheme and where ECF is not allowed.

For answers with missing or incorrect units, penalise one mark for the first occurrence in each question and write UNIT next to it. Do not penalise for subsequent occurrences in the same question.

Organic structures are shown in their skeletal form, but also accept displayed formulae as long as the representation is unambiguous.

State symbols are not required for balanced equations and students should not be penalised if they are absent.

No half marks are to be awarded. One blank tick box has been included per mark available for each part. Please mark by placing a tick in each box if mark is scored.

Question	1	2	3	4	5	Total
Marks Available	7	20	18	21	20	$\mathbf{8 6}$

1.	This question is about rocket fuel	Mark
(a)	$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$ State symbols not required Accept any multiple with correct stoichiometry e.g., $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	\square
(b)	$+494 \mathrm{~kJ} \mathrm{~mol}^{-1}$ If the equation used is $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$: $\Delta_{\mathrm{r}} H=\sum$ bonds broken(reactants) $-\sum$ bonds formed (products) $-241 \mathrm{~kJ} \mathrm{~mol}^{-1}=[(432+y)-(2 \times 460)] \mathrm{kJ} \mathrm{mol}^{-1}$ $y=[-241-432+(2 \times 460)] \mathrm{kJ} \mathrm{mol}^{-1}$ $y=+247 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\right.$ for $\left.1 / 2 \mathrm{~mole}^{2} \mathrm{O}_{2}\right)$ 1 mole of $\mathrm{O}=\mathrm{O}$ is $2 y=+494 \mathrm{~kJ} \mathrm{~mol}^{-1}$ If the equation used is $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$: $\Delta_{\mathrm{r}} H=\sum$ bonds broken(reactants) $-\sum$ bonds formed (products) $[2 \times-241] \mathrm{kJ} \mathrm{mol}^{-1}=[(2 \times 432)+y-(4 \times 460)] \mathrm{kJ} \mathrm{mol}^{-1}$ $y=[(2 \times-241)-(2 \times 432)+(4 \times 460)] \mathrm{kJ} \mathrm{mol}^{-1}$ $y=+494 \mathrm{~kJ} \mathrm{~mol}^{-1}$	\checkmark
(c)	(i) 35.2 mol $\begin{aligned} & 1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3} \\ & \text { Density }(\rho)=\text { mass }(\mathrm{m}) / \text { volume }(\mathrm{v}) \\ & \mathrm{m}\left(\mathrm{H}_{2}\right)=\rho \mathrm{v} \\ & \mathrm{~m}\left(\mathrm{H}_{2}\right)=0.071 \mathrm{~g} \mathrm{~cm}^{-3} \times 1000 \mathrm{~cm}^{3}=71 \mathrm{~g} \\ & \mathrm{n}\left(\mathrm{H}_{2}\right)=\mathrm{m} / \mathrm{M}_{\mathrm{r}}=71 \mathrm{~g} / 2.016 \mathrm{~g} \mathrm{~mol}^{-1}=35.2 \mathrm{~mol} \end{aligned}$	\square
	(ii) 8480 kJ Energy released $=35.2 \mathrm{~mol} \times+241 \mathrm{~kJ} \mathrm{~mol}^{-1}=8480 \mathrm{~kJ}$	\square
(d)	(i) $\mathrm{CO}_{2}+4 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O}$	
	(ii) $\left.$Oxidation state of H in reactant 0Oxidation state of C in reactant +4\right\rvert\,Oxidation state of H in product +1Oxidation state of C in product All four oxidation states must be correct for the mark. + sign is not needed.	V
(e)	-869.0 kJ $\begin{aligned} & \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \xrightarrow{-890.8 \mathrm{~kJ} \mathrm{~mol}^{-1}} \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\ & +8.2 \mathrm{~kJ} \mathrm{~mol}{ }^{-1} \\ & +(2 \times 6.8) \mathrm{kJ} \mathrm{~mol}^{-1} \end{aligned} \mathrm{CH}_{4(1)}+2 \mathrm{O}_{2(1)}$ $z=[+8.2+(2 \times 6.8)+-890.8] \mathrm{kJ} \mathrm{mol}^{-1}=-869.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, therefore -869.0 kJ . No penalty if final answer in $\mathrm{kJ} \mathrm{mol}^{-1}$. No marks if value given in wrong units.	\square
	Total out of 7	7

2.	This question is about electronegativity, bonding and structure	Mark
(a)	0.962 $\begin{gathered} \chi_{C l}-\chi_{H}=0.102 \sqrt{427-\frac{244+432}{2}} \\ \chi_{C l}-\chi_{H}=0.962 \end{gathered}$ The value should be positive, but accept if quoted as -0.962 .	\square
(b)	3.16 $\begin{gathered} \chi_{C l}-\chi_{H}=0.962 \\ \chi_{C l}=0.962+2.20 \\ \chi_{C l}=3.16 \end{gathered}$ ECF can be awarded from part (a). Answer to part (b) must be 2.20 more positive than answer to part (a). No marks are to be awarded for calculation that assumes Cl is less electronegative than H .	V
(c)	$\begin{gathered} \chi_{N}=0.00197\left[\mathrm{E}_{i}+\mathrm{E}_{\text {ea }}\right]+0.19 \\ \chi_{N}=0.00197[(14.5 \times 96.49)+6.80]+0.19 \\ \chi_{N}=2.96 \end{gathered}$	\square
(d)	(i) 1 (ii) E (iii) L (iv) G (v) J All five correct scores two marks. Four or three correct scores one mark. Two, one or none correct scores no marks.	\square \square
(e)	AIP Allow if they have written compound I. No ECF allowed if they have labelled one of the other five compounds in part (d) closer to the metallic corner of the triangle.	\checkmark
(f)	(i) B (ii) N (iii) E One mark each	
(g)	(i) $\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{BN}+3 \mathrm{H}_{2} \mathrm{O}$ State symbols not required. Accept any multiple with correct stoichiometry.	\checkmark

(ii) $\quad \mathrm{B}_{2} \mathrm{O}_{3}+10 \mathrm{~N}_{2}+3 \mathrm{CaB}_{6} \rightarrow 20 \mathrm{BN}+3 \mathrm{CaO}$

State symbols not required. Accept any multiple with correct stoichiometry.
(h)
(i) $4.78 \times 10^{-23} \mathrm{~cm}^{3}$
volume of cube $=(\text { side length })^{3}$
$\mathrm{v}=\mathrm{a}^{3}=\left(3.63 \times 10^{-10} \mathrm{~m}\right)^{3}=4.78 \times 10^{-29} \mathrm{~m}^{3}=4.78 \times 10^{-23} \mathrm{~cm}^{3}$
No marks for answer in m^{3} or \AA as question asked for cm^{3}.
(ii) $3.45 \mathrm{~g} \mathrm{~cm}^{-3}$

Unit cell has 4 B and 4 N .
(4 N completely within cube. $8 \times 1 / 8 \mathrm{~B}$ on corners, $6 \times 1 / 2 \mathrm{~B}$ on faces $=4 \mathrm{~B}$).
Mass of unit cell is $4(10.81+14.01) \mathrm{g} \mathrm{mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}=1.649 \times 10^{-22} \mathrm{~g}$
Density $(\rho)=$ mass $(\mathrm{m}) /$ volume (v)
$=1.649 \times 10^{-22} \mathrm{~g} / 4.78 \times 10^{-23} \mathrm{~cm}^{3}=3.45 \mathrm{~g} \mathrm{~cm}^{-3}$
Correct final answer scores full marks. First mark for correct number of B and N in unit cell. Second mark for correct mass of unit cell. Third mark for final answer. Allow ECF from part (h)(i).
(iii) $3.74 \times 10^{-23} \mathrm{~cm}^{3}$
area of regular hexagon $=\frac{3 \sqrt{3}}{2} \times(\text { side length })^{2}$
area $=\frac{3 \sqrt{3}}{2} \times\left(1.47 \times 10^{-10} \mathrm{~m}\right)^{2}=5.614 \times 10^{-20} \mathrm{~m}^{2}=5.614 \times 10^{-16} \mathrm{~cm}^{2}$
volume of right prism $=($ area of base $) \times($ height $)$
$v=5.614 \times 10^{-16} \mathrm{~cm}^{2} \times 6.66 \times 10^{-8} \mathrm{~cm}=3.74 \times 10^{-23} \mathrm{~cm}^{3}$
No marks for answer in m^{3} or \AA as question asked for cm^{3}.
(iv) $2.20 \mathrm{~g} \mathrm{~cm}^{-3}$

Unit cell has 2 B and 2 N .
($6 \times 1 / 6$ B on corners and $3 \times 1 / 3$ B on edges, making total of 2).
($6 \times 1 / 6 \mathrm{~N}$ on corners and $3 \times 1 / 3 \mathrm{~N}$ on edges, making total of 2).
Mass of unit cell is $2(10.81+14.01) \mathrm{g} \mathrm{mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}=8.246 \times 10^{-23} \mathrm{~g}$
Density $(\rho)=$ mass $(\mathrm{m}) /$ volume (v)
$=8.246 \times 10^{-23} \mathrm{~g} / 3.74 \times 10^{-23} \mathrm{~cm}^{3}=2.20 \mathrm{~g} \mathrm{~cm}^{-3}$
Correct final answer scores full marks. First mark for correct number of B and N in unit cell. Second mark for correct mass of unit cell. Third mark for final answer. Allow ECF from part (h)(iii).
(v) Unit cell has 2 B and 2 N .
(1 B completely within unit cell, $4 \times 1 / 12$ and $4 \times 2 / 12 B$ on corners, making total of 2).
(1 N completely within unit cell, $2 \times 1 / 6$ and $2 \times 2 / 6 \mathrm{~N}$ on edges, making total of 2).
Both must be correct for the mark.
3. This question is about amino acid complexes
(a)

(ii)

One mark each. If R group not drawn out or drawn out incorrectly, then one of the two marks can be awarded if protonation states correct in both structures.
(b)
(i)

No marks if R group not drawn out correctly.
(ii) 5.98

Isoelectric point $=\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right) / 2=(2.36+9.60) / 2=5.98$
(c)

As base is being added, pH must rise over course of titration. Expect buffer zones (line flattens out) around the pH of the two $\mathrm{p} K_{a}$ values of 2.36 and 9.60.
(d)

4. This question is about vaping
(a)

| Nitrile | Alcohol | Ester | Ketone | Ether | Carboxylic
 Acid |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | | \checkmark | | \checkmark | |

One mark each. Minus one for each incorrect answer down to zero.
(ii) 31

Full formula is $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{3}$.
(b)

Structure	Is this structure consistent with the data from...		
	... mass spectrometry?	... ${ }^{1} \mathrm{H}$ NMR?	$\ldots{ }^{13} \mathrm{C}$ NMR?
	\checkmark	\times	\checkmark
	\checkmark	\checkmark	\checkmark
	\times	\checkmark	\checkmark
$\stackrel{0}{-}$	\checkmark	\checkmark	\times

One mark for each fully correct column.
(c)

One mark each. For the first alkene product there is no difference between E and Z isomers. For the second alkene product the stereochemistry must be correctly E for all three double bonds to get the mark. The student does not have to write explicitly that the alkene is E.

(f)
5. This question is about cheese
(a) (i)

or

(b)

It must be clearly shown that the hydrogen bond comes from the H of the hydroxyl group.
(c)
(i)

Oxidation	Reduction	Condensation	Hydrolysis	Isomerisation	Elimination
			\checkmark		

No marks if more than one answer ticked.

(ii) \begin{tabular}{c|c|c|}
\mathbf{A}

glucose

\quad

\mathbf{B}

galactose
\end{tabular}

One mark each.
(d) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$

State symbols not required. Accept any multiple with correct stoichiometry.
(e) $3 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

State symbols not required. Accept any multiple with correct stoichiometry.
(f)
(i) $1.77 \times 10^{-6} \mathrm{~m}^{3}$

$$
V=\frac{4 \pi\left(0.5 \times 1.5 \times 10^{-2} \mathrm{~m}\right)^{3}}{3}=1.77 \times 10^{-6} \mathrm{~m}^{3}
$$

(ii) $1.98 \times 10^{-2} \mathrm{~g}$

$$
\begin{aligned}
n_{C O_{2}}=\frac{p V}{R T} & =\frac{101325 \mathrm{~Pa} \times 1.77 \times 10^{-6} \mathrm{~m}^{3}}{8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times(21+273) \mathrm{K}}=7.337 \times 10^{-5} \mathrm{~mol} \\
n_{C_{3} H_{6} O_{3}} & =3 n_{C O_{2}}=2.201 \times 10^{-4} \mathrm{~mol} \\
M_{C_{3} H_{6} O_{3}} & =[3 \times 12.01+6 \times 1.008+3 \times 16.00] \mathrm{g} \mathrm{~mol}^{-1}=90.078 \mathrm{~g} \mathrm{~mol}^{-1} \\
m_{C_{3} H_{6} O_{3}} & =n_{C_{3} H_{6} O_{3}} \times M_{C_{3} H_{6} O_{3}}=2.201 \times 10^{-4} \mathrm{~mol} \times 90.078 \mathrm{~g} \mathrm{~mol}^{-1}=1.98 \times 10^{-2} \mathrm{~g}
\end{aligned}
$$ Allow ECF from parts (e) and (f)(i).

(g)
$3.46 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
Labelling the total concentration as $c_{t o t}$, we have the two equations

$$
\left[\mathrm{CO}_{2(\text { ch })}\right]+\left[\mathrm{HCO}_{3(\text { ch })}^{-}\right]=c_{\text {tot }} \quad \text { and } \quad \frac{\left[\mathrm{H}_{\text {(ch) }}^{+}\right]\left[\mathrm{HCO}_{3(\text { ch) }}^{-}\right]}{\left[\mathrm{CO}_{2(\text { ch })}^{-}\right]}=K
$$

We use the first equation to express $\left[\mathrm{HCO}_{3(\text { (ch })}^{-}\right]=c_{\text {tot }}-\left[\mathrm{CO}_{2 \text { (ch) }}\right]$ and substitute this into the second equation as

$$
\frac{\left[\mathrm{H}_{\text {(ch) }}^{+}\right]\left(c_{\text {tot }}-\left[\mathrm{CO}_{2(\mathrm{ch})}\right]\right)}{\left[\mathrm{CO}_{2(\mathrm{ch})}\right]}
$$

With $\left[\mathrm{H}_{(\mathrm{ch})}^{+}\right]=10^{-\mathrm{pH}}=10^{-5.20} \mathrm{~mol} \mathrm{dm}^{-3}$, this rearranges to give

$$
\left[\mathrm{CO}_{2(\text { (h) })}\right]=\frac{c_{\text {tot }}}{1+\frac{K}{\left[H_{(\text {ch })}^{+}\right)}}=\frac{3.70 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}}{1+\frac{4.47 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}}{10^{-5.20} \mathrm{~mol} \mathrm{dm}^{-3}}}=3.46 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}
$$

Full credit for correct concentration of CO_{2} in cheese. One mark for correctly expressing [H^{+}(ch)] in terms of pH .
(h)

	$k_{\mathrm{H}} V_{\mathrm{ch}} p_{\mathrm{b}}$	$\frac{4 \pi r^{3} p_{\mathrm{b}}}{3 R T}$	$\frac{4 \pi r^{3} p_{\mathrm{b}}}{3 R T} K \cdot 10^{\mathrm{pH}}$	$K \cdot 10^{\mathrm{pH}} k_{\mathrm{H}} V_{\mathrm{ch}} p_{\mathrm{b}}$	$\frac{V_{\mathrm{ch}} p_{\mathrm{b}}}{3 R T}$	$K \cdot 10^{-\mathrm{pH}} k_{\mathrm{H}} V_{\mathrm{ch}} p_{\mathrm{b}}$
$\boldsymbol{n}_{\mathrm{CO}_{2(\mathrm{~g})}}$		\boldsymbol{V}				
$\boldsymbol{n}_{\mathrm{CO}_{2 \text { (ch) }}}$	\boldsymbol{V}					
$\boldsymbol{n}_{\mathrm{HCO}_{3(\text { (ch) }}^{-}}$				\boldsymbol{V}		

One mark for every correct identification. How the expressions are derived is explained below (not required of students):
For $\mathrm{CO}_{2(g)}$ the ideal gas law states $p V=n R T$, which rearranges to

$$
n_{\mathrm{CO}_{2(g)}}=\frac{p V}{R T}=\frac{4 \pi r^{3} p_{b}}{3 R T}
$$

For $\mathrm{CO}_{2(\text { (h) })}, n_{\mathrm{CO}_{2(\text { (h) }}}=\left[\mathrm{CO}_{2(\text { ch) }}\right] \cdot V_{\text {ch }}$, which combined with Henry's law gives

$$
n_{\mathrm{CO}_{2(h))}}=k_{H} V_{c h} p_{b}
$$

For $\mathrm{HCO}_{3}{ }^{-}$(ch) rearrange the expression for the acid dissociation constant as

$$
n_{\mathrm{HCO}_{3(c h)}^{-}}^{-}=\left[\mathrm{HCO}_{3(c h)}^{-}\right] \cdot V_{c h}=K \frac{\left[\mathrm{CO}_{2(c h)}\right] \cdot V_{c h}}{\left[H_{(c h)}^{+}\right]}=K \cdot 10^{p H} k_{H} V_{c h} p_{b}
$$

(i)

$$
a=k_{\mathrm{H}} V_{\mathrm{ch}}\left(1+K \cdot 10^{\mathrm{pH}}\right) \quad \text { and } \quad b=\frac{4 \pi}{3 R T}
$$

One mark each for correct expression for a and b.
Working (not required of students):

$$
\begin{aligned}
\eta=n_{\mathrm{CO}_{2(\text { (h) })}}+ & n_{\mathrm{HCO}_{3(\text { (h) })}^{-}}+n_{\mathrm{CO}_{2(g)}} \\
& =k_{H} V_{c h}\left(p_{a t m}+\frac{\gamma}{r}\right)+K \cdot 10^{p H} k_{H} V_{c h}\left(p_{a t m}+\frac{\gamma}{r}\right)+\frac{4 \pi r^{3}}{3 R T}\left(p_{a t m}+\frac{\gamma}{r}\right)
\end{aligned}
$$

we can collect the terms as

$$
\left(k_{H} V_{c h}+K \cdot k_{H} V_{c h} \cdot 10^{p H}+\frac{4 \pi r^{3}}{3 R T}\right)\left(p_{a t m}+\frac{\gamma}{r}\right)=\eta
$$

or

$$
\left(k_{H} V_{c h}\left(1+K \cdot 10^{p H}\right)+\frac{4 \pi r^{3}}{3 R T}\right)\left(p_{a t m}+\frac{\gamma}{r}\right)=\eta
$$

so that

$$
a=k_{H} V_{c h}\left(1+K \cdot 10^{p H}\right) \quad \text { and } \quad b=\frac{4 \pi}{3 R T}
$$

(j)
$r=6.96 \times 10^{-3} \mathrm{~m}$ or $r=1.16 \times 10^{-4} \mathrm{~m}$
The question suggested that γr^{-1} should be small compared to $p_{\text {atm }}$. Only the first of these roots $\left(r=6.96 \times 10^{-3} \mathrm{~m}\right)$ satisfies this condition and gives the correct answer.
One mark for each correct value of r that solves the equation and one mark for identifying the larger value $\left(r=6.96 \times 10^{-3} \mathrm{~m}\right)$ as the physical solution.

$$
\begin{aligned}
& d=\frac{2.35 \times 10^{-4} \mathrm{~mol}}{101325 \mathrm{~Pa}}-1.70 \times 10^{-9} \mathrm{~mol} \mathrm{~Pa}^{-1}=6.193 \times 10^{-10} \mathrm{~mol} \mathrm{~Pa}^{-1} \\
& \left(\frac{d}{b}\right)^{\frac{1}{3}}=7.073 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$\frac{\gamma \eta}{3 p_{a t m}^{2} d}=\frac{9.28 \mathrm{~Pa} \mathrm{~m} \times 2.35 \times 10^{-4} \mathrm{~mol}}{3 \times 101325^{2} \mathrm{~Pa}^{2} \times 6.193 \times 10^{-10} \mathrm{~mol} \mathrm{~Pa}}{ }^{-1}=1.143 \times 10^{-4} \mathrm{~m}$
The equation for r becomes

$$
r=7.073 \times 10^{-3} \times\left(1-1.143 \times 10^{-4} \cdot \frac{1}{r}\right)
$$

Multiplying both side by r gives

$$
r^{2}=7.073 \times 10^{-3} r-8.087 \times 10^{-7} \quad \text { or } \quad r^{2}-7.073 \times 10^{-3} r+8.087 \times 10^{-7}=0
$$

which is solved by

$$
r=\frac{1}{2} \cdot 7.073 \times 10^{-3} \pm \sqrt{\left(\frac{1}{2} \cdot 7.073 \times 10^{-3}\right)^{2}-8.087 \times 10^{-7}}
$$

giving either $r=6.96 \times 10^{-3} \mathrm{~m}$ or $r=1.16 \times 10^{-4} \mathrm{~m}$.
A note on deriving the simplified equation (non-examinable). The approximation makes use of the Taylor series $(1+x)^{\alpha}=1+\alpha x+\cdots \approx 1+\alpha x$, valid for $|x| \ll 1$. First write

$$
a+b r^{3}=\eta\left(p_{a t m}+\frac{\gamma}{r}\right)^{-1}=\frac{\eta}{p_{a t m}}\left(1+\frac{\gamma}{r p_{a t m}}\right)^{-1} \approx \frac{\eta}{p_{a t m}}\left(1-\frac{\gamma}{r p_{a t m}}\right)
$$

Then subtract a and divide both sides by b

$$
r^{3} \approx\left(\frac{\eta}{p_{a t m}}-a\right) \cdot \frac{1}{b}-\frac{\eta \gamma}{p_{a t m}^{2} b} \cdot \frac{1}{r}=\frac{d}{b}-\frac{\eta \gamma}{p_{a t m}^{2} b} \cdot \frac{1}{r}
$$

and take the cube root, employing the truncated Taylor series approximation again

$$
r \approx\left(\frac{d}{b}-\frac{\eta \gamma}{p_{a t m}^{2} b} \cdot \frac{1}{r}\right)^{\frac{1}{3}}=\left(\frac{d}{b}\right)^{\frac{1}{3}}\left(1-\frac{\eta \gamma}{p_{a t m}^{2} d} \cdot \frac{1}{r}\right)^{\frac{1}{3}} \approx\left(\frac{d}{b}\right)^{\frac{1}{3}}\left(1-\frac{\eta \gamma}{3 p_{a t m}^{2} d} \cdot \frac{1}{r}\right)
$$

