

48th INTERNATIONAL

CHEMISTRY OLYMPIAD

2016

UK Round One

MARK SCHEME

Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

In general error carried forward can be applied. We have tried to indicate where this may happen in the mark scheme.

For answers with missing or incorrect units, penalise one mark for the first occurrence in **each** question and write **UNIT** next to it. Do not penalise for subsequent occurrences in the same question.

Organic structures are shown in their skeletal form, but also accept displayed formulae as long as the representation is unambiguous. Benzene rings may be drawn with localised or delocalised bonding.

Comments in blue have been added to some questions, these are not required for the marks, but may be of interest in subsequent discussion on the questions.

Question	1	2	3	4	5	Total
Marks Available	12	23	31	21	13	100

1. This question is about energy storage using a chemical cycle

(a)	(i)	$\Delta_{\rm r} H^{\rm o}$ (reaction (3)) = $\Delta_{\rm f} H^{\rm o}$ (I _{2(g)}) - 2 $\Delta_{\rm f} H^{\rm o}$ (HI) = (62.4 - 2 × 26.5) kJ mol ⁻¹ = +9.4 kJ mol ⁻¹	1
	(ii)	Plus sign not required. ΔS° (reaction (3)) = (131 + 261 - 2 × 207) J K ⁻¹ mol ⁻¹ = -22 J K ⁻¹ mol ⁻¹	1
	(iii)	Minus sign must be present. $\Delta_r G^{\circ}(\text{reaction (3)}) = 9.4 \text{ kJ mol}^{-1} - (298 \text{ K} \times -0.022 \text{ kJ K}^{-1} \text{ mol}^{-1})$ $= +16.0 \text{ kJ mol}^{-1}$ Plus sign not required. Allow error carried forward from (i) and/or (ii)	1
	(iv)	$K_{298} = \exp(-\Delta G/RT) = \exp(15956 / (8.314 \times 298))$ = 1.60 × 10 ³ Allow error carried forward from (iii). Do not penalise if equilibrium constant has units.	2
	(v)	$\Delta_r G^{\circ}(\text{reaction } (3)) = 9.4 \text{ kJ mol}^{-1} - (723 \text{ K} \times -0.022 \text{ kJ K}^{-1} \text{ mol}^{-1})$ = 25.3 kJ mol ⁻¹ $K_{723} = \exp(-\Delta G/RT) = \exp(25306 / (8.314 \times 723))$ = 0.0148 Allow error carried forward from (i) and/or (ii). Do not penalise if equilibrium constant has units.	2
(b)	Proc 2 × 1 This 2H ₂ 0 Stat the	Aucts of reaction (1) cancel out when they occur in the following proportion: reaction (1) + reaction (2) + 2 × reaction (3). simplifies down to the following reaction: $O_{(g)} \rightarrow 2H_{2(g)} + O_{2(g)}$ e symbols not required. Accept the equation with mole ratio 1:1:1/2. Award 1 mark if reactions are combined in the correct ratio but simplifying is done incorrectly.	2
(c)	2×2 $[2 \times \Delta r H^{o}]$ Plus	$\Delta_r H^o(1) + \Delta_r H^o(2) + 2 \times \Delta_r H^o(3) = -2 \times \Delta_t H^o(H_2O_{(g)})$ $\Delta_r H^o(1) + 439 + 2 \times 9.4] kJ mol^{-1} = 484 kJ mol^{-1}$ (1) = +13 kJ mol^{-1} <i>s sign not required. Allow error carried forward from (i).</i>	2
(d)	Ene For of su This All ti thes The	rgy stored = 242 kJ the sequence: 2 × reaction (1) + reaction (2) + 2 × reaction (3) there are two moles ulfur atoms. sequence has an overall $\Delta_r H^o = 484 \text{ kJ mol}^{-1}$ his energy is 'stored' as separate hydrogen and oxygen and can be released when e are recombined. refore, per mol of sulfur, the energy stored is 242 kJ.	1
		Question Total	12

2. This question is about the chemistry of tungsten

(a)

(C)

(d)

1⁄2

1

1

Bond Angle: 109.5°

Must have attempted to draw a tetrahedral shape to be given credit, i.e. do not credit square planar structures.

- (b) (i) $CaWO_{4 (s)} + Na_2CO_{3 (aq)} \rightarrow CaCO_{3 (s)} + Na_2WO_{4 (aq)}$ 1 State symbols not required.
 - (ii) Na₂WO_{4 (aq)} + 2HCl (aq) \rightarrow H₂WO_{4 (aq)} + 2NaCl (aq) State symbols not required.

Correct 3D tetrahedral structure not required as long as connectivity and bonding are correct.

(iii)	$H_2WO_4 (aq) \rightarrow WO_3 (s) + H_2O (g)$ State symbols not required.	1
(iv)	WO _{3 (s)} + $3H_{2 (g)} \rightarrow W$ (s) + $3H_{2}O$ (l) State symbols not required.	1
(i)	x = 1 $3 \times O = -6$ $1 \times Li = +1$ Therefore W = +5 Accept if 5 is written rather than +5.	1
(ii)	x = 0.3 $3 \times O = -6$ $1 \times Li = +0.3$ Therefore W = +5.7 Accept if 5.7 is written rather than +5.7.	1
Assu Den = 14 = 5.2	uming air to be made only of nitrogen (N ₂) sity of SF ₆ relative to air = 32.06 + (6 × 19.00) / (2 × 14.01) 6.06 / 28.02 21	1
Den = 29 = 10	sity of WF ₆ relative to air = 183.85 + (6 × 19.00) / (2 × 14.01) 7.85 / 28.02 .63	1

(e)	pV = 1 m = (8 = 0. = 2.	= nRT ol of gas occupies: V/n = RT/p .314 J K mol ⁻¹ × 298 K) / 100000 N m ⁻² 02476 m ³ mol ⁻¹ 476 × 10 ⁴ cm ³ mol ⁻¹	
	Den = 0. <i>Giv</i> e	sity of WF ₆ = 297.85 g mol ⁻¹ / 2.476 × 10 ⁴ cm ³ mol ⁻¹ 0120 g cm ⁻³ e credit if they use 24 dm ³ for 1 mol of gas as a known value at STP.	2
(f)	WF	$_{6 (g)}$ + 4H ₂ O (I) \rightarrow H ₂ WO _{4 (aq)} + 6HF (aq)	1
	WFe Acc	$s_{(g)} + 3H_2O_{(l)} \rightarrow WO_3_{(s)} + 6HF_{(aq)}$ ept either. State symbols not required.	
(g)	(i)	Positive This is because there are more moles of gas on the right than the left.	1
	(ii)	$\Delta_{\rm r} H^{\rm o} = \Delta_{\rm f} H^{\rm o} ({\rm H}_2 {\rm SO}_{4({\rm g})}) + 6 \times \Delta_{\rm f} H^{\rm o} ({\rm HF}_{({\rm g})}) - \Delta_{\rm f} H^{\rm o} ({\rm SF}_6) - 4 \times \Delta_{\rm f} H^{\rm o} ({\rm H}_2 {\rm O})$ = -735 + (6 × -273) - (-1210 + 4 × -242) kJ mol ⁻¹	1
		= -195 kJ mol ⁻¹ 1 mark for correct expression if numerical calculation is done incorrectly.Correct answer scores full marks.	1
	(iii)	B SF ₆ is kinetically stable but thermodynamically unstable	1
(h)	Tun = 1	gsten = 1 atom inside unit cell + 4 × atoms on face + 8 × atoms on corner + $(4 \times \frac{1}{2}) + (8 \times \frac{1}{8}) = 4$ atoms	1
	Calo = (6	cium = 6 × atoms on face + 4 × atoms on edge $5 \times \frac{1}{2}$ + (4 × $\frac{1}{4}$) = 4 atoms	1
	Oxy = 16	gen = 16 × atoms inside unit cell 5 atoms	1
(i)	Volu = 3.	ume of Unit Cell = 0.524 nm × 0.524 nm × 1.137 nm 122 × 10 ⁻²⁸ m ³ = 3.122 × 10 ⁻²² cm ³	
	Mol = 28	ar mass of CaWO₄ = (40.08 + 183.85 + 4 × 16.00) g mol ⁻¹ 87.93 g mol ⁻¹	
	Mas = 4.	ss of one formula unit = 287.93 g mol ^{−1} / 6.02 × 10 ²³ mol ^{−1} 783 × 10 ^{−22} g	1
	Mas = 4	ss of one unit cell × 4.783×10^{-22} g = 1.913 × 10^{-21} g	1
	Den = 6.	sity = 1.913 × 10 ⁻²¹ g / 3.122 × 10 ⁻²² cm ³ 13 g cm ⁻³	1
	1 m	ark for calculation of mass of formula unit. 1 mark for four formula units per unit cell	

1 mark for calculation of mass of formula unit, 1 mark for four formula units per unit cell and 1 mark for answer. Correct answer scores full marks.

3. This question is about Double Bond Equivalents, DBE

- (a) (i) C_nH_{2n}
 - (ii) C_nH_{2n-2}
 - (iii) CnH2n-2
 - (iv) C_nH_{2n-6}

(b)	DBE =	Ring	Double Bond	Triple Bond
	3			
		3	0	0
		2	1	0
		1	2	0
		1	0	1
		0	3	0
		0	1	1

If all correct (in any order)

Minus 1/2 mark for any missing or incorrect line down to 0

DBE =	Ring	Double Bond	Triple Bond
4			
	4	0	0
	3	1	0
	2	2	0
	2	0	1
	1	3	0
	1	1	1
	0	4	0
	0	2	1
	0	0	2

If all correct (in any order) Minus ½ mark for any missing or incorrect line down to 0

(c) (i) 1⁄2 4 9 1⁄2 (ii) (iii) 61 1⁄2 1⁄2 (iv) 4 (v) 4 1⁄2 3 (vi) 1⁄2

1/2 1/2 1/2 1/2 1/2

2

3

d)		Ν	lumber of (m	atoms in e	Structural information deduced				
	Spectrum	Triple Bond (Alkyne)	Double Bond (Alkene)	Single Bond	Allene Central	Allene Flanking	Number of Triple Bonds	Number of Double Bonds	Number of Rings
ſ	Α	0	8	0	0	0	0	4	1
	В	0	0	8	0	0	0	0	5
Γ	С	4	0	4	0	0	2	0	1
Γ	D	0	2	0	2	4	0	5	0
ſ	Ε	0	8	0	0	0	0	4	1
	F	2	6	0	0	0	1	3	0
	G	0	6	2	0	0	0	3	2
	Н	0	6	2	0	0	0	3	2
		0	2	6	0	0	0	1	4

Each line must be fully correct to score the mark

Structures A and B are worth 1 mark each, Structures C-I are worth 2 marks each. *Marks are awarded for each fully correct structure in the correct place. Correct structures in an incorrect place score zero. No partial marks are awarded for a structure. No error carried forward is allowed if structure is wrong but consistent with the student's answer in the previous table. Where more there is more than one possibility only one structure needs to be drawn. There may be other possibilities which can be given full credit but only if they are fully consistent with all NMR data listed. Please contact the Committee if you find any alternatives.*

4 This question is about the synthesis of Addyi

Carbon: 45.70/12.01 = 3.805 (a) Hydrogen 10.55/1.008 = 10.47 Nitrogen 13.32/14.01 = 0.951 Oxygen 30.43/15.99 = 1.90 Simplest whole number ratio = 4:11:1:2 Empirical formula = $C_4H_{11}O_2N$ If oxygen is forgotten then can award 1 mark if calculation is done correctly.

2

(e)

2 marks

Accept any one of the following for 1 mark.

-N N

4

Question Total 21

2 marks

2 marks Give full credit to the E isomer of the imine.

2

5. This question is about the radiocarbon dating of King Richard III

- (a) C Wash repeatedly with dilute HCl then dilute NaOH
- (b)

(i) 1 n Accept if they label the diagram with an 'n' to show the polymer $[NHCH_2CO]_n + 3\frac{1}{4} nO_2 \rightarrow 2nCO_2 + nNO_2 + \frac{3}{2} nH_2O$ 2 (ii) $[NHCH_2CO]_n + 2\frac{1}{4} nO_2 \rightarrow 2nCO_2 + \frac{n}{2}N_2 + \frac{3}{2} nH_2O$ Accept either equation or a multiple of either. 1 (iii) $CO_{2(g)} + 2H_{2(g)} \rightarrow C(s) + 2H_{2}O_{(g)}$ State symbols not required. (iv) 40% of 1.0 g bone = 0.40 g polyglycine The entire mass of carbon in polyglycine becomes graphite Mass of graphite = % carbon in polyglycine × 0.40 g $(2 \times 12.01) / (2 \times 12.01 + 3 \times 1.008 + 16.00 + 14.01) \times 0.40$ g = 0.168 g1 (c) Amount of C = $0.002 \text{ g} / 12.01 \text{ g mol}^{-1} = 1.665 \times 10^{-4} \text{ mol}$ Number of atoms of C = 1.665×10^{-4} mol $\times 6.02 \times 10^{23}$ mol⁻¹ = 1.00×10^{20} Number of atoms of ¹⁴C initially (N₀)= $(1.215 \times 10^{-10} / 100) \times 1.00 \times 10^{20} = 1.22 \times 10^{8}$ 1 Half life $(t_{\frac{1}{2}}) = 5568$ years $= 5568 \times 365 = 2.032 \times 10^6$ days Decay Constant (k) = $\ln 2 / t_{\frac{1}{2}} = \ln 2 / 2.032 \times 10^{6}$ days $= 3.41 \times 10^{-7} \text{ day}^{-1}$ 1 Number of atoms of ¹⁴C left = $N_0 exp(-kt)$ Number of atoms of ¹⁴C decayed = $N_0 - N_0 exp(-kt)$ $= 1.22 \times 10^8 - 1.22 \times 10^8 \times \exp(-3.41 \times 10^{-7} \times 1)$ = 41.6 ≈ 42 atoms 1 (d) Decay Constant (k) = $\ln 2 / t_{\frac{1}{2}} = \ln 2 / 5568$ years = 1.245 x 10⁻⁴ year⁻¹ 1 $N(^{14}C)/N(^{12}C) = 1.154 \times 10^{-12}$ $N_0(^{14}C)/N_0(^{12}C) = 1.215 \times 10^{-10} / 98.93 = 1.228 \times 10^{-12}$ As $N(^{12}C) = N_0(^{12}C)$ $N(^{14}C)/N_0(^{14}C) = 1.154 \times 10^{-12} / 1.228 \times 10^{-12} = 0.9397$ 1 For ¹⁴C: N = N₀exp(-kt) $t = - [ln (N(^{14}C)/N_0(^{14}C))] / k$ $= - [\ln (0.9397)] / 1.245 \times 10^{-4} = 500$ years 1 Date of Death = 2012 - 500 = 1512Accept if any year between 2012-2016 is used as the date of the dating experiment. 1 No credit if they just write 1485! **Question Total** 13

PAPER TOTAL 100