

44th INTERNATIONAL CHEMISTRY OLYMPIAD

UK Round 1 - 2012

MARK SCHEME

Question	1	2	3	4	5	Total
Mark	9	14	17	23	17	80

Quest	ion 1				
		Answer	Marks		
a)	(i)	Breaking bonds in 8 moles of S_7 (g): $8 \times 7 \times 260.0 \text{ kJ mol}^{-1} = 14560.0 \text{ kJ mol}^{-1}$ Making bonds in 7 moles of S_8 (g): $7 \times 8 \times 263.3 \text{ kJ mol}^{-1} = 14744.8 \text{ kJ mol}^{-1}$ Enthalpy change of reaction = $(14560.0 - 14744.8) \text{ kJ mol}^{-1} = -184.8 \text{ kJ mol}^{-1}$	1		
b)	(i)	Amount S ₇ = 0.0076 g / (7 × 32.06) g mol ⁻¹ = 3.387 × 10 ⁻⁵ mol Amount S ₈ = 0.9892 g / (8 × 32.06) g mol ⁻¹ = 3.857 × 10 ⁻³ mol	1		
	(ii)	$\mathbf{K_c} = [S_8]^7 / [S_7]^8$	1		
	(iii)	Value for K_c $[3.857 \times 10^{-3}]^7$ / $[3.387 \times 10^{-5}]^8 = 7.34 \times 10^{18}$ (Ignore any units) (allow error carried forward from part b(i)	1		
c)	(i)	$\Delta_r H^{e}(298 \text{ K}) = (-296.8 - (-297.1)) \text{ kJ mol}^{-1} = (+)0.3 \text{ kJ mol}^{-1}$			
	(ii)	The most stable form is orthorhombic Allow monoclinic if the answer given in c(i) is negative	1		
d)		N=S=N S S S N=S=N	1		
e)		N=S-N 	1		
f)		N=S=N-S or $N=S=N-S$ or either in reverse order	1		

		Total for Question 1	9			
Quest	ion 2					
		Answer	Marks			
a)	(i)	Amount of S in moles = amount of BaSO ₄ = 0.260 g / $(137.34 + 32.06 + 4(16.00)) \text{ g mol}^{-1}$ = 1.114 mmol % of sulfur by mass = $1.114 \text{ mmol} \times 32.06 \text{ g mol}^{-1} \times 100\% = 3.57\%$				
	(ii)	Mass of BaSO ₄ (aq) in 2.50 dm ³ = 2.4 mg dm ⁻³ × 2.50 dm ³ = 6.0 mg Total mass of BaSO ₄ in 2.50 dm ³ = 6.0 mg + 260 mg = 266 mg % of sulfur by mass in human hair = $(0.266 \text{ g} / 0.260 \text{ g}) \times 3.57\% = 3.65\%$	1			
b)		Oxidation	1			
c)		(i) pH 0 (ii) pH 7 (iii) pH 14 O SH	3			
d)		Via $pK_a = pH - log_{10} ([A^2-]/[HA^-])$ Or via $K_a = [H^+] ([A^2-]/[HA^-])$ $10.31 = 9 - log_{10} ([A^2-]/[HA^-])$ $K_a/[H^+] = ([A^2-]/[HA^-])$ $log_{10} ([A^2-]/[HA^-]) = -1.31$ $([A^2-]/[HA^-]) = (10^{-10.31}/10^{-9})$ $([A^2-]/[HA^-]) = 0.049$ $([A^2-]/[HA^-]) = 0.049$				
		Then $[A^{2-}] + [HA^{-}] = 100 \%$ So $[A^{2-}] = 4.67 \%$ and therefore $[HA^{-}] = 95.3 \%$	1			
e)		Ker-S-S-Ker + 2 RS-H → R-S-S-R + 2 Ker-S-H	1			
f)		Line C	1			
g)		Gradient of graph allowed between 3.83×10^{-3} to 4.16×10^{-3} min ⁻¹ k is then calculated by gradient / 0.16 This corresponds to range of acceptable value for the rate constant k Minimum $k = 3.99 \times 10^{-4}$ mol ⁻¹ dm ³ s ⁻¹ or 2.40×10^{-2} mol ⁻¹ dm ³ min ⁻¹ Maximum $k = 4.34 \times 10^{-4}$ mol ⁻¹ dm ³ s ⁻¹ or 2.60×10^{-2} mol ⁻¹ dm ³ min ⁻¹ 2 marks for correct value with correct units; 1 mark if correct but units missing / wrong; 1 mark if units correct but value is calculated (correctly) from gradient outside range; 0 marks correct units with incorrect answer.				
h)		Gradient of graph allowed between 1.23×10^{-2} to 1.27×10^{-2} min ⁻¹ Using k from part (g), concentration is calculated by dividing gradient by k . Concentration = 0.499 mol dm ⁻³ Molar mass of ammonium thioglycolate = $(14.01 + 4 \times 1.008) + (2 \times 12.01 + 2 \times 16.00 + 3 \times 1.008 + 32.06) = 109.146$ g mol ⁻¹ Amount in one bottle = $0.500 \times 0.499 \times 109.146 = 27.2$ g 2 marks: One of these is for calculating a correct concentration given their k in part (g), and one for a correct mass from their concentration. Any answer close to 27g where the correct method has been used should be given full credit.	2			
		Total for Question 2	14			

Quest	ion 3								
		Answer							Marks
a)		Longest-knov	vn			Most	recently	/ discovered	
		S	Р	0		Ar		Pu	
		All elements i	in correct or	der scores 2 ma	ırks			_	2
				e achieved by m 's answer, awar	_	e elemer	nt to any	new	
b)									
		C ₂ H ₅ OC ₂ H ₅	C₂H₅OH	HOCH ₂ CH ₂ OH	CH₃CH	0 (C ₄ H ₁₀	H ₂ O	
		3	4	6	2		1	5	
		All answers co	orrect score	s 2 marks					2
		If the correct order can be achieved by moving one compound to a new position, award 1 mark							
c)	(i)	FeS ₂ (give 1 mark for FeS)							
	(ii)	MgSO ₄ or MgSO ₄ .7H ₂ O							1
	(iii)	N ₂ O							1
d)	(i)	Propanone	Propanone						
	(ii)	Methylbenze	ne						1
	(iii)	Sodium chlor	ate(I)						1
e)		White to yello	ow						1
f)	(i)	С							1
	(ii)	E							1
	(iii)	В							1
	(iv)	А							1
	(v)	D							1
						•	Total for	Question 3	17

Questi	on 4	
	Answer	Marks
a)	B OH CN	1
	С	1
	D HO O	1
	E OH O OH	1
	F OH O	1
	G OH O OH O OH O OH OH OH OH OH OH OH OH	6
	bond $O-H$ $C=O$ in a small ring $C\equiv N$ $N-H$ $C=O$ One mark for correct structure for G ; one mark for each correct entry in table	
b)	Anion I O OR OR OR OR 2 marks (1 mark for this alternative)	2

Question	4 continued	
	Answer	Marks
с)	J OH O O NC OR	
	NC OH OH OOR	3
	L OO OO OO OOR	
d)	Phenylamine NH ₂	
	4-fluorobenzaldehyde H O F	2

Questio	n 4 continued	
	Answer	Marks
e)	P O O O O O O O O O O O O O O O O O O O	4
f)	U O O O O O O O O O O O O O O O O O O O	1
	Total for Question 4	23

				Answ	er				Marks
a)	(i)	$C_{132}H_{120}N_2 + 164O_2 \rightarrow 132$ or $C_{132}H_{120}N_2 + 162O_2 \rightarrow 1$	=)H ₂ O + 2N	02				1
	(ii)	$M_r = (132 \times 12.01) + (120 \times 1.008) + (2 \times 14.01) = 1734.30$ % of C = $((132 \times 12.01) / 1734.30) \times 100\% = 91.41\%$ % of H = $((120 \times 1.008) / 1734.30) \times 100\% = 6.97\%$ % of N = $((2 \times 14.01) / 1734.30) \times 100\% = 1.62\%$							1
b)		R H ₃ C A S H ₃ C IIII R H ₃ C IIIII R H ₃ C IIIIII R H ₃ C IIIII R H ₃ C IIIIII R H ₃ C IIIII R H ₃ C IIIIII R H ₃ C IIIII R H ₃ C IIIIII R H ₃ C IIIII R H ₃ C IIIIII R H ₃ C IIIII R H ₃ C IIIIIII R H ₃ C IIIII R H ₃ C IIIIIII R H ₃ C IIIII R H ₃ C IIIIII R H ₃ C IIIII R H ₃ C IIII R H ₃ C IIII R H ₃ C IIII R H ₃ C IIIII R H ₃ C IIIII R H ₃ C II	ar is correct is income	orrectly as	signed – 1	mark (fo		CH ₃ R CH ₃ R CH ₃ S CH ₃ S CH ₃ S CH ₃ S	6
c)		"B and F" is awarded 2 m "B and F; A and C" is awar Any other answer is awar	ded one						2
d)		A, C and E. Any other answ	wer is aw	arded no	mark				1
e)					1	<u> </u>	<u> </u>		
		(i) Spin clockwise	Α	B ✓	С	D	Е	F	
		(ii) Spin anti-clockwise						✓	
		(iii) Remain stationary	✓		1	1			6
		(iv) Move forwards					✓		
		One mark for each car/let Note that if B is marked a combination scores 1 mar	s 'anti-clo	ockwise' a		arked as 'c	lockwise'	, this	
		Combination 3cores 1 mai	K 101 COI	اعاعدداال 15					