42nd INTERNATIONAL CHEMISTRY OLYMPIAD

UK Round One - 2010

MARKING SCHEME

Notes

Chemical equations may be given as sensible multiples of those given here.

Formulae can be given by any conventional method (i.e. structural or molecular).

State symbols do not need to be included in the chemical equations to obtain the mark(s).

Answers should be given to an appropriate number of significant figures although the marker should only penalise this once in the whole paper.

Total 61 marks.

Question 1					
		Ans	swer	Marks	
(a)		Ambrox ($C_{16}H_{28}O$) has a molar mass of ((16*12.01)+(28*1.008)+(1*16)) = 236.384 g mol ⁻¹ . 10000000 g produced every year, therefore (10000000/236.384) =		1 mark	
			uced each year.		
(b)		$ \begin{array}{c} $	B $C_{16}H_{25}N$ Accept structures with the nitrile group shown as CN	1 mark per correct structure	
		C $C_{16}H_{26}O_{2}$ Accept structures with the carboxyl group shown as COOH.	D OH OH OH OH OH $C_{16}H_{30}O_2$		
(c)	i)	The percentage yields for each ste yield of 24.87 %.	ep are combined to give an overall	1 mark	
	ii)	Number of moles of (-)-drimenol needed = (number of moles of Ambrox produced in a year)/(overall yield) = (42304.5/0.2487) = 170102.5 moles of (-)-drimenol (-)-drimenol has a molar mass of ((15*12.01)+(26*1.008)+(1*16)) = 222.358 g mol ⁻¹ . The mass of (-)-drimenol needed is therefore (222.358*170102.5) = <u>38 tonnes</u> . Also accept correctly worked solutions using the candidate's answers to (a) and (c) i). Do not penalise candidates for rounding values in the intermediate part of the calculation.		1 mark	
	iii)	The mass of bark needed = (mass of (-)-drimenol)/(proportion of (-)- 1			

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

drimenol in bark) = 37.825/0.005 = <u>7.6x10³ tonnes</u> .	
Also accept correctly worked solutions using the candidate's answer to (c) ii).	

Ques	Question 2					
		Answer	Marks			
(a)		% Cu = 27.58%	2 marks			
(b)	i)	$Ag^+ + CI^- \rightarrow AgCI$ OR $AgNO_3 + CI^- \rightarrow AgCI + NO_3^-$	1 mark			
	ii)	% CI = 38.46%	2 marks			
(c)	i)	Oxygen	1 mark			
	ii)	C:H:N:Cu:Cl = 8:24:2:2:5 2 marks or nothing.	2 marks			
	iii)	[Cu ₄ Cl ₁₀ O] ⁴⁻	1 mark			

Question 3				
		Answer	Marks	
(a)		$U + 3CIF_3 \longrightarrow UF_6 + 3CIF$	1 mark	
(b)		The Ag and CI in AgCI should be circled.		
(c)	i)	$3IF \longrightarrow I_2 + IF_3$ $5IF_3 \longrightarrow I_2 + 3IF_5$ $7IF_5 \longrightarrow I_2 + 5IF_7$	3 marks	
	ii)	$3IF \longrightarrow I_2 + IF_3$ $\Delta_r H^{\theta} = -3\Delta_f H^{\theta}(IF) + \Delta_f H^{\theta}(IF_3) = (286.2 - 486) \text{ kJ mol}^{-1} = -199.8 \text{ kJmol}^{-1}$		
		$5IF_3$ → $I_2 + 3IF_5$ $\Delta_r H^{\theta} = -5\Delta_f H^{\theta}(IF_3) + 3\Delta_f H^{\theta}(IF_5) = (2430 - 2529) \text{ kJ mol}^{-1} = -99 \text{ kJ} \text{ mol}^{-1}$	3 marks	
		7IF ₅ → I ₂ + 5IF ₇ $\Delta_{\rm r} {\rm H}^{\rm θ} = -7\Delta_{\rm f} {\rm H}^{\rm θ} ({\rm IF}_{\rm 5}) + 5\Delta_{\rm f} {\rm H}^{\rm θ} ({\rm IF}_{\rm 7}) = (5901 - 4812.5) \text{ kJ mol}^{-1} = +1088.5 \text{ kJ mol}^{-1}$		
	iii)	IF₅ doesn't disproportionate.	1 mark	

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

Question 4				
		Answer	Marks	
(a)	i)	A = Water vapour (or gas), B = Ice (or solid), C = Liquid water (or liquid)	1 mark	
	ii)	Chemical Potential Dotential O °C O °C O °C D °C D °C D °C D °C D °C Temperature Can be either in °C or K). Must indicate clearly that temperatures correspond to the point on the graph where the lines intersect to get the marks.	2 marks	
(b)	i)	Chemical Potential Chemical Potential of a Salt Solution Temperature (1 mark) Accurate positioning is not required but line they have drawn must be below line C at all points.	1 mark	
	ii)	Higher than Water	1 mark	
(c)	i)	RMM (H ₂ O) = 18.016 Density of H ₂ O = 1000 g dm ⁻³ Concentration of Water = Density/RMM = 55.5 mol dm ⁻³	1 mark	
	ii)	Concentration of NaCl = 3.00 mol dm^{-3} Concentration of ions = 6.0 mol dm^{-3} Concentration of H ₂ O = 55.5 mol dm^{-3} Mole fraction of ions (x _i) = $6.0/(6.0 + 55.5)$ = 0.10	1 mark	

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

(d)	i)	$\Delta T = \frac{x_i R T_m^2}{\Delta_m H^{\Theta}}$	2 marks
		$\Delta T = (0.0976 \times 8.314 \times 273 \times 273)/6010$	
		ΔT = 10.1 K	
		Freezing Point = -10.1 °C or 262.9 K	
		All correct (2 marks) [Error Carried Forward – Answer should be 103.1 x Answer to part c) ii)] If enthalpy is used in kJ without converting then 1 mark .	
	ii)	$x_i = \frac{\Delta T \Delta_m H^{\Theta}}{R T_m^2}$	
		x _i = (21.1 x 6010)/(8.314 x 273 x 273)	
		x _i = 0.205	2 marks
		$x_i = [ions]/([ions] + [water])$	
		0.205 = [IONS]/([IONS] + [55.5]) Rearranging [IONS] = 14.31 mol dm ⁻³	
		Concentration of NaCl = 7.16 mol dm ⁻³	
		All correct (2 marks) Correct calculation of x_i (1 mark). If x_i incorrect but correct calculation to work out [NaCl] from x_i (1 mark)	
		Concentration of $CaCl_2 = 3.0 \text{ mol dm}^{-3}$	
(e)		Concentration of ions = 9.0 mol dm ⁻³	
		Concentration of H ₂ O total = 55.5 mol dm ^{\circ}	
		$= 28.5 \text{ mol dm}^{-3}$	
		Mole fraction of ions $(x_i) = 9.0/(9.0 + 28.5)$	
		= 0.240	
		$\Delta T = \frac{x_i R T_m^2}{\Delta_m H^{\Theta}}$	2 marks
		∆T = (0.240 x 8.314 x 273 x 273)/6010	
		ΔТ = 24.7 К	
		Freezing Point = -24.74 °C or 248.3 K	
		All correct (2 marks). If [ions] of 6.0 mol dm ⁻³ used or failure to account for bound water but all else correct (1 mark). (Final answer should be $x_i \ge 103.1$). If more than one mistake made in calculation of x_i no marks.	

Question 5					
		Ans	swer	Marks	
(a)		i) +4 ii) +8	iii) +6	All correct = 1 2 correct = $\frac{1}{2}$	
(b)		Oxidation		1 mark	
(c)		OsO4		1 mark	
(d)		+6		1 mark	
(e)	i)	H ₃ C CH ₂ CH ₃	ii) H ₃ C CH ₂ CH ₃	All correct = 2 2 correct = $\frac{1}{2}$	
	iii)	H ₃ C CH ₂ CH ₃	iv)		
(f)	i)	3		1 mark	
		DIOL	ALKENE		
(f)	ii)	HO CH ₂ CH ₃ H ₃ CH ₂ C OH	H_3CH_2C		
		HO CH ₂ CH ₃ H ₃ CH ₂ C OH	CH ₂ CH ₃ H ₃ CH ₂ C		
		HO CH ₂ CH ₃ H ₃ CH ₂ C OH	H ₃ CH ₂ C CH ₂ CH ₃		
		(1 mark) for each correct pair of diol and alkene to a maximum of (3 marks) if all correct. If meso compound is drawn twice do not penalise again if answer to f) i) is 4. No marks are awarded for correct diol with incorrect or missing alkene, or for alkene on its own.		3 marks	
(g)		5 8 9 12			
		All correct (2 marks); (¹ / ₂ mark for each correct number). If more than four numbers are given then (minus ¹ / ₂ mark) for each additional answer above the first four down to a minimum of zero.		2 marks	

Question 6					
		Answer	Marks		
(a)		Mass of a gold atom = 197 g mol ⁻¹ / 6.02 ×10 ²³ mol ⁻¹ = 3.27×10^{-22} g	1 mark		
(b)		Number of atoms in unit cell = $(8 \times 1/8) + (6 \times 1/2) = 4$	1 mark		
(c)	i)	If <i>a</i> is the length of the unit cell edge and <i>r</i> is the radius of an atom: $a\sqrt{2} = 4r$ length AB = $4r/\sqrt{2} = 2\sqrt{2} \times r$	1 mark		
	ii)	volume of unit cell = $32r^3 / \sqrt{2} = 16\sqrt{2} \times r^3$	1 mark		
	iii)	length of body diagonal $a\sqrt{3} = 2\sqrt{6} \times r$	1 mark		
(d)		Molar volume of gold = 197 g mol ⁻¹ / 19.3 g cm ⁻³ = 10.2 cm ³ mol ⁻¹	1 mark		
(e)		Fraction = 4 × volume of gold atom / unit cell volume = $(4 \times 4/3 \pi r^3) / (16\sqrt{2} \times r^3) = \pi\sqrt{2} / 6 = 0.74$	1 mark		
(f)		Radius of gold atom = [(volume of gold atom) / $(4/3)\pi$] ^{1/3} = [(10.2 cm ³ mol ⁻¹ / 6.02 × 10 ²³ mol ⁻¹) × 0.74 / $(4/3)\pi$] ^{1/3} = 1.44 × 10 ⁻⁸ cm	1 mark		
(g)	i)	Surface area of dome = $\frac{1}{2} \times 4\pi (21 \text{ m} / 2)^2 = 693 \text{ m}^2$ Volume of gold = 80 000 g / 19.3 g cm ⁻³ = 4 145 cm ³ = 0.004 145 m ³ Average thickness of gold = 0.004 145 m ³ / 693 m ² = 6.0 × 10 ⁻⁶ m = 6.0 × 10 ⁻⁴ cm	1 mark		
	ii)	Thickness of a layer of gold atoms = $(2\sqrt{6} \times r) / 3 = 2.35 \times 10^{-8}$ cm Number of layers of gold atoms = 6.0×10^{-4} cm / 2.35×10^{-8} cm = 2.5×10^{4}	1 mark		
		Only penalise once for error carried forward			