ANSWERS ROUND 1

1. This is a question about trends in chemistry

- a. Na, S₈, Al, Si
- b. H₂, CH₄, NH₃, LiH
- c. Mg, Na, Ca, K
- d. Mg²⁺, Na⁺, F⁻, Cſ
- e. K, Na, Cl, F
- f. Si, S, P, Cl
- g. Br₂, Cl₂, O₂, N₂
- h. XeF₄, OF₂, SiF₄, BF₃
- i. CH₃F, CH₃Cl, CH₃Br, CH₃I
- j. SO₃, SO₂, NaCl, Na₂O

(1 mark each)

Total 10

2. This question is about enthalpy changes in solution

a) -525 kJ mol⁻¹ per mole of Mg

-136 kJ mol⁻¹ per mole of Cu

(2 marks) (-1 for incorrect sign or unit)

(2 marks) (-1 for incorrect sign or unit - also give marks if they give an answer applicable to their equation)

b) $\Delta H = -661 \text{ kJ mol}^{-1}$ of Magnesium

(1 mark) (- also give mark for ecf eg added together 2 answers to part a) correctly.)

3. This question is about the synthesis of Salbutamol

Note – if students have drawn any of the structures slightly incorrectly then no marks should be given – ie **no part or half marks** allowed.

b) Alternative reagent = ethanoyl chloride (do not accept ethanoic acid) (1 mark)

4. This question is about intermetallic compounds

- *a)* IR absorption at 3400 cm⁻¹ is characteristic of OH. On reduction in hydrogen, A produces 0.162 g of water which is **9 mmol = 9 x 10⁻³ mol**. *(1 mark)*
- b) This implies that A contains 9 moles of O probably as OH. From the reaction stoichiometry, 3 moles of Cu and 1 mole of Au are probably in the product. Since 1 mmol of A weighs 0.541 g, the RMM of A should be 541. (1 mark)

 $3 \times \text{RMM}(\text{Cu}) + 1 \times \text{RMM}(\text{Au}) + 9 \times \text{RMM}(\text{OH}) = \text{RMM of A}$ therefore, RMM of A - (3 × 63.43) + 196.97 + (9 × 17) = 540.6 thus A = AuCu₃(OH)₉ (1 mark)

c) B is intermetallic which implies loss of OH to give water with the formation of AuCu₃. If B is 50.8% Au then it must be 49.2% Cu. Therefore Au (50.8/196.97 = 0.257) and Cu (49/2/63.54 = 0.774); (1 mark for ratios)

0.257:0.774 = **1:3**, ie AuCu₃

(1 mark for final formula) – (must show working to get full marks for this section)

Total 5

5. This question is about chiral molecules

- a) A B D F H (3 marks 3 marks for all 5 correct, 2 marks for 4 correct, 1 mark for 3 correct)
- b) D G (2 marks 1 mark each)
- c) C E (2 marks 1 mark each)

Throughout question –1 mark for every 'extra' incorrect answers given, down to zero.

6. This question is about inorganic analysis

Mass of barium sulpha No of moles of BaSO₄=	te = 3.927g = <u>3.927</u> 	(1 mark)
	= 0.01683 = no of moles of BaCl	(1 mark) ₂ + Ba(NO ₃)₂
No of moles of Ag^+	$= 21.24 \times 10^{-3} \times 0.23$	12 = 4.911 x 10 ⁻³ <i>(1 mark)</i>
No of moles of Cl^{-} in 25cm ³ = No of moles of Cl^{-} in 250cm ³ = No of moles of BaCl ₂ + MgCl ₂ =	= 0.004911 = 0.04911 = 0.02456	(1 mark)
Let no of moles of $BaCl_2$ \therefore no of moles of $Ba(NO_3)_2$	= x = 0.01683 - x	(1 mark) (- for trying to get barium pitrate moles)
\therefore no of moles of MgCl ₂	= 0.02456 - x	
 ∴ Mass of BaCl₂ ∴ Mass of Ba(NO₃)₂ = ∴ Mass of MgCl₂ 	= 208.26x g = 261.38(0.01683 - x) = 4.399 - 261.38x g = 95.22(0.02456 - x) = 2.339 - 95.22x g	
But total mass of sample	= 5.000g	
$ \therefore 5.000 = 208.2 \\ = -148.3 \\ 148.34x = 1.738 $	6x + 4.399 – 261.38x + 2.339 34x + 6.738	9 – 95.22x
$x = 0.01^{\circ}$	172	(3 marks)
∴ Mass of BaCl ₂ ∴ Mass of Ba(NO ₃) ₂ = ∴ Mass of MgCl ₂	= 2.441g = 1.336g = 1.223g	(1 mark)
$\therefore \% \text{ of } BaCl_2 =$ $\therefore \% \text{ of } Ba(NO_3)_2$ $\therefore \% \text{ of } MgCl_2 =$	= 48.82 = 26.72 = 24.46	<i>(1 mark)</i> (must have all 3 %s)

7. This question is about the dimerization of 1,3-butadiene

a) (accept skeletal forms also)

- c) rate = $k [1,3-butadiene]^2$ (1 mark)
- d) $A_{1} = 4.4 \times 10^{7} \text{ dm}^{3} \text{ mol}^{-1} \text{ s}^{-1}$; Ea = + 108 kJ mol⁻¹ (ln A = 17.6) (4 marks) (2 marks for A with units, 2 marks for Ea with units. Allow 1 mark if In A is written)
- e) reverse reaction activation energy = $108 + 150 = 258 \text{ kJ mol}^{-1}$ (1 mark)

8. This question is about structure determination using spectroscopy

Compound **A** is a liquid that boils at the same temperature as water. It gives the following combustion analysis data:

C: 64.8%; H: 13.6%; O: 21.6%.

a) Calculate the empirical formula of compound A.

64.8/12.00 = 5.413.6/1.00 = 13.621.6/16.00 = 1.35

Molar ratio: $C_{5.4}H_{13.6}O_{1.35}$

Divide by smallest: $C_4H_{10}O = Empirical Formula$ (1 mark)

b) Suggest the molecular formula of compound A.

c) This formula can contain one of two functional groups. Identify both of them.

Hydroxyl group –OHEther C-O-C	(1 mark for both)
-------------------------------	-------------------

The infrared spectrum of compound **A** is as shown (attached):

d) What functional group can be identified in this spectrum?

Hydroxyl group – broad absorption \sim 3300 cm⁻¹ (NO Marks)

e) Draw the structural formulae and give the name of each possible structure of compound **A**.

(4 marks, I for each name and structure -1 mark for ethers etc)

Compound **A** reacts with acidified potassium manganate(VII) to give compound **B**. This new compound boils at a lower temperature than compound **A** and has the ¹H NMR spectrum as shown (attached):

f) Give the structural formula of compound **B** and indicate on the structure how this is consistent with the NMR spectrum.

Chemical Shift ppm	Multiplicity	Integration	Assignment
0.94	triplet	(1) 3	-CH ₃ (X)
2.04	singlet	(1) 3	-CH ₂ - (Y)
2.36	quartet	(0.66) 2	CH ₃ CO- (Z)

(2 marks - Need to include the relationship between structure and splitting)

g) How would you expect the infrared spectrum of **B** to differ from **A**?

No absorption at \sim 3300 cm⁻¹ because there is no –OH group in compound B.

An absorption at ~1750 cm^{-1} due to the C=O group in compound B.

(1 mark for both parts correct)

h) Give the name of compound **B**.

Butan-2-one (NO marks)

The mass spectrum of compound ${\bf B}$ (attached) contains fragment ions at m/e 57 and m/e 43.

i) Give the formulae of the fragment ions observed.

(1 mark for both correct - charge must be included)