
Olympiad 2001 - Round 1 answers

1. This question is about shapes of molecules

2. This question is about lattice enthalpies

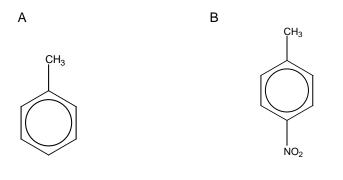
i)	FeO $-(416 + 759 + 1561 + 249 + 657) + (-278) = -3920 \text{ kJ mol}^{-1}$ CaO $-(178 + 590 + 1145 + 249 + 657) + (-635) = -3454 \text{ kJ mol}^{-1}$ (1 mark for each correct answer – must include units)	(1) (1)
ii)	iron(II) oxide (FeO)	(1)
iii)	-(-278) + (-635) = -357 kJ mol ⁻¹	(1)

iv) Calcium is too expensive, difficult to separate products, very violent reaction (any one reason accepted) (1)

V)	A balance between I.E and lattice enthalpy	(1)
		Total 6

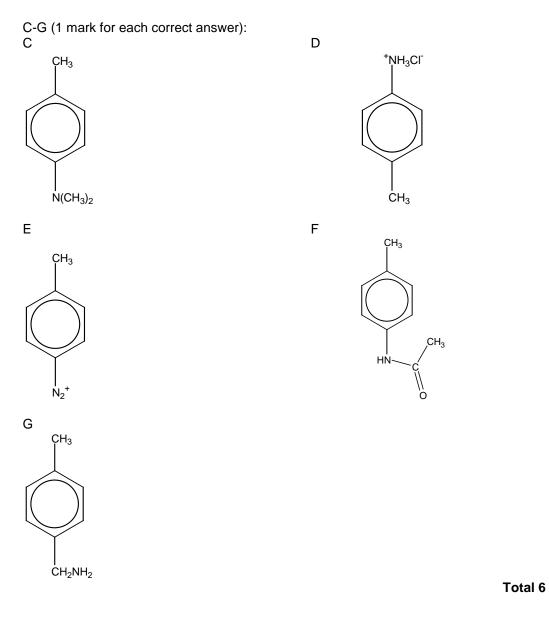
3. This question is about superconductors

i) Ratio 1:2:3:7 i.e. **YBa₂Cu₃O₇** (1 mark for correct method or very nearly correct answer, 2 marks for fully correct)


ii) oxidation state 14-(3+4)/3 = 7/3 Cu = 2.33 (1)
iii) 84.2/666.19 = x/658.19. x = 83.19 mg (1 mark for masses(± 0.1 for variation in RAMs) + 1 mark for answer)
Total 5

4. This question is about lodine Number

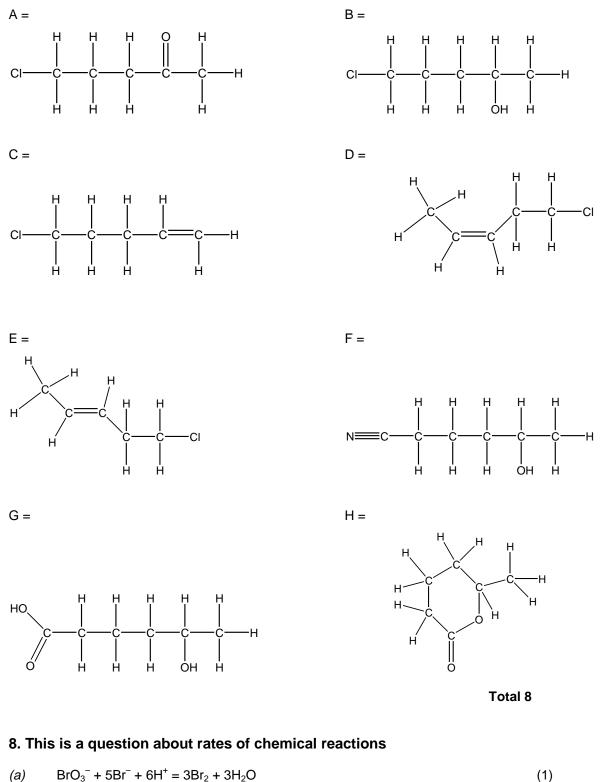
(i)	By keeping the mixture of oil and iodine monochloride in the dark, free radical	substitution of
alkyl g	alkyl groups is prevented. (1)	
(ii)	$ICI(aq) + KI(aq) \rightarrow KCI(aq) + I_2(aq)$	(1 mark –
must give full equation and not ionic equation - do not penalise for incorrect state symbols in this question)		
(iii)	0.00400 moles	(1)
(iv)	0.00200 moles of unreacted iodine monochloride	(1)
(v)	0.000500 moles	(1)
(vi)	100	(1)


(-1 mark for incorrect sig figs in iii), iv) and v)

5. This question is about organic compounds

(Both A and B correct for 1 mark)

Total 6



6. This question is about metal nitrates

a)	$NaNO_{3(s)} \rightarrow$	NaNO _{2(s)} + ¹ / ₂ O _{2(g)}	(1)
	$Mg(NO_3)_{2(s)} \rightarrow$	$MgO_{(s)}$ + $2NO_{2(g)}$ + $\frac{1}{2}O_{2(g)}$	(1)
b)	$2MnO_{4(aq)} + 6H^{+}(aq)$	$_{\rm q_{\rm l}}$ + 5NO _{2 (aq)} \rightarrow 2Mn ²⁺ _(aq) + 5NO _{3 (aq)} + 3H ₂ O _(l)	(1)
c)	2MnO _{4 (aq)} + 5(CO	$O_{2^{2^{-}}(aq)}^{2^{-}} + 16H^{+}_{(aq)} \rightarrow 2Mn^{2^{+}}_{(aq)} + 10CO_{2(g)} + 8H_{2}O_{(l)}$	(1)
d)	$NaNO_3 = 4.25g$	$Mg(NO_3)_2 = 11.1g$	(2)
e)	1 : 2.4 (5:12) O ₂ :N	NO ₂	(1)
			Total 7

7. This question is about the identification of unknown organic compounds

(1 mark each correct compound – no follow on marks – take of $\frac{1}{2}$ a mark for each answer where the student has NOT given DISPLAYED formula)

(b) (i) 1 (ii) 1 (mark scheme 2marks for 3 correct, 1 mark for 2 correct, 0 marks for 1 or 1) (2) (iii) 2

4

(c)	1.48 x 10^{-2} – 1.50 x 10^{-2} mol ⁻³ dm ⁹ s ⁻¹ (1 mark correct value, 1 mark for units)	(2)
(d)	[ethanoic acid] = 0.0300 (mol dm ⁻³) [H ⁺] = 7.22 x 10 ⁻⁴ (mol dm ⁻³) 9.91 x 10 ⁻¹¹ (mol dm ⁻³ s ⁻¹)	(1) (1) (1)

Total 8

9. This question is about the acid-base properties of glycine

a)	$A = {}^{+}NH_3 . CH_2 COOH$	
	$B = {}^{+}NH_3 . CH_2 COO^{-}$	(2)
	$C = NH_2 \cdot CH_2 COO^{-}$ (mark scheme 2marks f	or 3 correct, 1 mark for 2 correct, 0 marks for 1or1)
b)	⁺ NH ₃ . CH ₂ COOH ↑	
	9.78 2.35 (1	mark for both parts correct)
c)	At X : pH = 2.35	
	Y : pH = 9.78	[acid] = [salt] (1) pH = pKa
d)(i)H ₃	$N^+ . CH_2 COOH \Rightarrow H_3N^+ . CH_2 . COO^- + H_3N^+ . CH_2 . COO^- + H_3N^+ . CH_2 . COO^- + H_3N^+ . CH_3 . CH$	H⁺ Ka₁
	H_3N^+ . $CH_2COO^- \Rightarrow H_2N$. $CH_2COO^- + H^+$	Ka ₂ (1 mark for both parts correct)
(ii)	$Ka_1 = [H^+] [H_3N^+ . CH_2 COO^-]$	
	$[H_3N^+$. CH_2 COOH]	
	$Ka_2 = [H^+] [H_2N . CH_2 COO^-]$	
	$[H_3N^+$. CH_2 COO ⁻]	(1 mark for both parts correct)
e)	$Ka_{1} = [H^{\dagger}][^{\dagger}NH_{3}.CH_{2}.COO^{-}]$ $[^{\dagger}NH_{3}.CH_{2}COOH]$	
	$10^{-2.35} = 10^{-4} [^{+}NH_3 CH_2 COO^{-}]$ $\overline{[^{+}NH_3 CH_2 COOH]}$	
	$[^{+}NH_3 CH_2 COO^{-}] = 44.6$	
	[⁺ NH ₃ CH ₂ COOH]	(2)

(2) Total 8