Problem Set \#4, January 2022

Strychnine is an alkaloid isolated from the seeds of the Strychnos nux-vomica trees. Due to the ease of its isolation and extremely high potency, strychnine was a widely used rodenticide in the 18th century (a dose as small as 50 mg can be fatal to an adult human!). Questions 61-67 refer to the structure of strychnine:

61. How many degrees of unsaturation are in the molecule?
a) 5
b) 7
c) 11
d) 12
e) 13
62. How many sp^{2}-hybridized carbon atoms are in the molecule?
a) 6
b) 7
c) 8
d) 9
e) 10
63. Which of the following functional groups are NOT in the molecule?
a) ether
b) substituted benzene ring
c) alkene
d) lactam
e) 2° amine
64. How many chiral centres (stereocentres) are in the compound?
a) 5
b) 6
c) 7
d) 8
e) 9
65. The enantiomer of naturally occurring strychnine can be described as being:
a) racemic
b) a meso compound
c) a saturated compound
d) optically inactive
e) chiral
66. An isomer of strychnine that has the opposite configuration at all stereocentres is called a(n):
a) identical compound
b) enantiomer
c) diastereomer
d) meso compound
e) constitutional isomer
67. If strychnine undergoes ozonolysis with $1 . \mathrm{O}_{3} ; 2 . \mathrm{Zn}$ /acetic acid, two new functional groups are formed. They are:
a) an aldehyde and a ketone
b) a ketone and an alcohol
c) an aldehyde and an alcohol
d) an aldehyde and a carboxylic acid
e) a ketone and a carboxylic acid
68. Hydrogenation of (E)-3-methylhexa-1,3-diene on a catalytic surface of Pd / C results in the formation of which product?
a) 3-methylhexane
b) (Z)-3-methylhex-3-ene
c) (Z)-3-methylhexa-1,3-diene
d) 3-methylhex-1-ene
e) (E)-3-methylhex-3-ene
69. Which compound below is NOT a constitutional isomer of 4-methyl-1-phenylpentan-1-one?
a)

b)

c)

d)

e)

70. Rank the following carbocations in order of decreasing stability (most stable to least stable).
\oplus

A

B

C

D
a) A $>$ B $>$ C $>$ D
b) C $>$ D $>$ B $>$ A
c) D $>$ C $>$ B $>$ A
d) A $>$ C $>$ B $>$ D
e) D $>$ B $>$ C $>$ A
71. In an infrared, a strong and broad band around $3300 \mathrm{~cm}^{-1}$ suggests the presence of which functional group?
a) alcohol
b) alkyne
c) carbonyl
d) aromatic ring
e) alkene
72. Which of the following names represents the following molecule?

a) (S,Z)-1,2-dihydroxy-7-phenylhept-5-en-7-one
b) (R,Z)-1,2-dihydroxy-7-phenylhept-5-en-7-one
c) (R, E)-6,7-dihydroxy-1-phenylhept-2-en-1-one
d) (S,Z)-6,7-dihydroxy-1-phenylhept-2-en-1-one
e) (R, Z)-6,7-dihydroxy-1-phenylhept-2-en-1-one
73. Rank the following compounds in order of decreasing acidity (most acidic to least acidic).

A

B

C

D
a) A $>$ B $>$ D $>$ C
b) C $>$ D $>$ A $>$ B
c) C $>$ D $>$ B $>$ A
d) D $>$ C $>$ B $>$ A
e) A $>$ B $>$ C $>$ D
74. How many separate signals would you expect in the ${ }^{1} \mathrm{H}$ NMR spectrum for 4-ethyl-3-methoxybenzaldehyde?
a) 3
b) 4
c) 6
d) 7
e) 12
75. Which of the following compounds are aromatic?

(ii)

(iii)

(iv)

(v)
a) Only ii, iv, v
b) Only ii, v
c) Only i, ii, v
d) Only i, iii, iv
e) All are aromatic
76. The mechanism of the following reaction is best described as...

a) $\mathrm{S}_{\mathrm{N}} 1$
b) $\mathrm{S}_{\mathrm{N}} 2$
c) E1
d) E2
e) radical
77. Name the product of the following reaction:

2. $\mathrm{NaHSO}_{3}, \mathrm{H}_{2} \mathrm{O}$
a) $(1 \mathrm{~S}, 2 \mathrm{~S})$-cyclohexane-1,2-diol
b) (1R,2R)-cyclohexane-1,2-diol
c) $(1 R, 2 \mathrm{~S})$-cyclohexane-1,2-diol
d) cyclohexanol
e) cyclohexanone
78. Which reagents could be used to complete the following reaction in good yield?

a) 1. $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$; 2. $\mathrm{H}_{3} \mathrm{O}^{+}$
b) 1. $\mathrm{NaBH}_{4}, \mathrm{EtOH}$; 2. $\mathrm{H}_{3} \mathrm{O}^{+}$
c) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$
d) CrO_{3}, pyridine, $\mathrm{H}_{2} \mathrm{O}$
e) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$
79. Which of the following compounds represents the major product of the reaction below?

a)

b)

c)

d)

e)

80. What reagent(s) could be used to convert 2-methyloct-2-ene into 2-bromo-2-methyloctane in good yield?
a) $\mathrm{Br}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
b) $\mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O}$
c) 1. $\mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{H}_{2} \mathrm{O}$; 2. NaBH_{4}
d) $\mathrm{HBr}, \mathrm{Et}_{2} \mathrm{O}$
e) 1. $\mathrm{BH}_{3}, \mathrm{THF}$; 2. $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$

