Problem Set #3, December 2019

Use the thermodynamic data related to the dissolution of silver chloride to answer questions 41-43. (Assume ΔH and ΔS do not change with temperature)

	AgCl	\rightleftharpoons	Ag ⁺	+	Cl⁻
$\Delta H_{f^{o}}$ (kJ/mol)	-127		105		-167
S° (J/mol)	-109		77		-131

- 41. We know from experience that dissolution increases with temperature. Explain this observation using the thermodynamic data for silver chloride dissolution.
 - a. Both ΔH° , and ΔS° are greater than zero
 - b. The reaction is exothermic and an increase in temperature pushes the equilibrium towards the products
 - c. $\Delta G < 0$ at 25 °C
 - d. The equilibrium of most reactions move towards the products with increasing temperature
 - e. Not enough information provided
- 42. By how much does the solubility of silver chloride increase when you increase the temperature of the solution from 10 °C to 90 °C?
 - a. 170x
 - b. 21x
 - c. 76x
 - d. 214x
 - e. 14x
- 43. If you have a 1 L container of seawater that has a chloride concentration of 20 mg/L at 25 °C, how many milliliters (mL) of 1.0 M silver nitrate (AgNO₃) can you add to the seawater **before** you observe a silver chloride precipitate?
 - a. 3.2 mL
 - b. 4.5 mL
 - c. 17 mL
 - d. 5.3 mL
 - e. 0.36 mL
- 44. Which of the following is **not** a redox reaction?
 - a. $NO_2(g) + OH(g) \rightarrow HNO_3(g)$
 - b. $HOCI(aq) + HCI(aq) \rightarrow CI_2(g) + H_2O(l)$
 - c. $SO_2(g) + OH(g) + O_2(g) \rightarrow SO_3(g) + HO_2(g)$
 - d. $2HOCI(aq) \rightarrow CI_2O(aq) + H_2O(l)$
 - e. $SO_2(g) + H_2O_2(aq) \rightarrow SO_3(g) + H_2O(l)$

45. A plume of air near a smoke stack contains a partial pressure of sulfur dioxide gas (SO₂) of 1.0 x 10⁻⁷ atm, using the equilibrium reaction shown below calculate the pH of cloud droplets that form in this air plume?

SO₂(g) + 2H₂O(l) \rightleftharpoons HSO₃⁻(aq) + H₃O⁺(aq) K = 1.7 x 10⁻² a. 2.79 b. 5.56 c. 3.26 d. 2.55

- e. 4.38
- 46. You take a bottle of water, toluene and benzyl alcohol out of the freezer. All of the liquids are at 0 °C and all are in the liquid state (water is not frozen). You place 100 g of each of the liquids on a hot plate. Assuming they are all receiving heat energy from the hot plate at the same rate, which liquid will be the **last** to start to boil?

Water: Boiling point 100 °C Density 1.00 g/mL Heat Capacity 4.18 J/(g °C)

Toluene: Boiling point 111 °C Density 0.87 g/mL Heat Capacity 1.71 J/(g °C)

Benzyl alcohol: Boiling point 205 °C Density 1.04 g/mL Heat Capacity 2.03 J/(g °C)

- a. Water
- b. Toluene
- c. Benzyl alcohol
- d. Water and toluene
- e. Toluene and benzyl alcohol
- 47. How much energy is evolved when 10.0 moles of carbon disulfide gas (CS₂) react with 15.0 moles of molecular oxygen (O₂) to form carbon dioxide (CO₂) and sulfur dioxide (SO₂)?

$C(s) + O_2(g) \rightarrow CO_2(g)$	∆H = - 393.5 kJ
$S(s) + O_2(g) \rightarrow SO_2(g)$	∆H = - 296.8 kJ
$C(s) + 2S(s) \rightarrow CS_2(g)$	∆H = 117 kJ
 a. 15 400 kJ b. 22 600 kJ c. 378 kJ d. 5520 kJ e. 11 900 kJ 	

48. 770.1 kJ of energy is released during a phase change of water between the liquid and gas phases. What was the product, and how much of it was formed?

 $H_2O(I) \rightarrow H_2O(g)$ $\Delta H = 44.01 \text{ kJ/mol}$

- a. 44.0 moles of water vapour
- b. 44.0 moles of liquid water
- c. 17.5 moles of water vapour
- d. 17.5 moles of liquid water
- e. Not enough information provided
- 49. With a heat capacity of 1.04 J/(g °C), it takes 104 J of heat energy to raise the temperature of 10 g of nitrogen gas (N₂) 10 °C. Assuming no change in the heat capacity, is the entropy change that results from this heating equivalent for the following changes in temperature:

$$\label{eq:shared_target_states} \begin{split} \Delta T_1 &: -100 \ ^{o}\text{C to} - 90 \ ^{o}\text{C} \\ \Delta T_2 &: 200 \ ^{o}\text{C to} \ 210 \ ^{o}\text{C} \end{split}$$

- a. Yes, ΔS for ΔT_1 and ΔT_2 are equivalent
- b. No, ΔS is greater for ΔT_1
- c. No, ΔS is greater for ΔT_2
- d. Need ΔG
- e. Need ΔH
- 50. As equilibrium is approached the magnitude of ΔG will:
 - a. Not change
 - b. Become a larger negative value
 - c. Become a larger positive value
 - d. Become a smaller negative value
 - e. Become a smaller positive value
- 51. Which of the following statements is true when $E_{cell} = 0$?
 - a. T = 298 K
 - b. The reaction is approaching equilibrium
 - c. The reaction is spontaneous
 - d. $\Delta G^{o} = 0$
 - e. $\Delta G = 0$
- 52. In the spontaneous reaction between nickel (Ni²⁺/Ni) and tin ((Sn²⁺/Sn)) under standard state conditions, which species is the oxidizing agent?

 $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $E^{\circ} = -0.25 V$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $E^{\circ} = -0.13 V$

- a. Ni²⁺(*aq*)
- b. Ni²⁺(s)
- c. Sn²⁺(*aq*)
- d. Sn(*s*)
- e. No reaction

53. What is the cell potential (E_{cell}) for the voltaic cell between chromium (0.05 M) and zinc (1.0 M) at the given concentrations at 298 K?

Zn ²⁺ (Cr ³⁺ ($aq) + 2e^{-} \rightarrow Zn(s)$ $aq) + 3e^{-} \rightarrow Cr(s)$	E ^o = - 0.76 V E ^o = - 0.74 V
a.	– 0.0056 V	
b.	0.0056 V	
c.	– 0.0026 V	
d.	0.0026 V	

- e. 0.02 V
- 54. At 25 °C the Ksp of silver phosphate (Ag₃PO₄) is 2.6×10^{-18} . What is the molar solubility of silver phosphate at 25 °C?
 - a. 1.8 x 10⁻⁵ M
 - b. 6.9 x 10⁻⁵ M
 - c. 9.6 x 10⁻¹⁵ M
 - d. 8.3 x 10⁻³ *M*
- 55. Using the Ksp value provided in question 14, calculate the molar solubility of silver phosphate at 25 °C in the presence of 0.1 *M* potassium phosphate (K₂PO₄).
 - a. 5.7 x 10⁻⁹ M
 - b. 9.9 x 10⁻⁷ M
 - c. 6.9 x 10⁻³ M
 - d. 4.2 x 10⁻⁶ M
- 56. For the following systems at equilibrium, choose the system where doubling the volume of the container will cause a shift in the equilibrium towards the products. (Assume constant temperature)
 - a. $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$
 - b. $2CO(g) + O_2(g) \rightleftharpoons 2CO_2(g)$
 - c. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
 - d. $H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$
 - e. $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$
- 57. Ammonia (for fertilizer and other uses) is made by causing hydrogen and nitrogen to react at high temperature and pressure. The equation is

 $N_2 + H_2 \rightarrow NH_3$ (Not balanced!)

How many grams of ammonia can be made from 70.0 g of hydrogen and 210.1 g of nitrogen?

- a. 238
- b. 255
- c. 267
- d. 275
- e. 280

- 58. The pH at the equivalence point of a titration of 100 mL of 0.50 M benzoic acid (C_6H_5COOH) is 8.95. What is the K_a of benzoic acid?
 - a. 6.3 x 10⁻⁵
 - b. 1.8 x 10⁻⁴
 - c. 3.2 x 10⁻⁶
 - d. 8.9 x 10⁻⁶
 - e. 8.9 x 10⁻⁴
- 59. The pKa of the anilinium ion $(C_6H_5NH_3^+)$ is 4.87. Your blood is buffered to pH 7.4, if you ingest aniline $(C_6H_5NH_2)$, which of the following statements is **true**?
 - a. The anilinium ion ($C_6H_5NH_3^+$) is the dominant species present
 - b. Aniline $(C_6H_5NH_2)$ is the dominant species present
 - c. The anilinium ion ($C_6H_5NH_3^+$) and aniline ($C_6H_5NH_2$) are present at similar concentrations
 - d. You would need to perform a titration to determine the speciation of aniline
 - e. Not enough information given
- 60. How many grams of gold could be plated out on the cathode of an electrolytic cell by the passage of 0.50 Amps of current through a solution of gold nitrate (AuNO₃) for 30 minutes?
 - a. 3.07 x 10⁻² g
 - b. 2.41 g
 - c. 3.68 g
 - d. 1.84 g
 - e. 17.9 g