THE CANADIAN CHEMISTRY CONTEST 2010 for high school and CEGEP students (formerly the National High School Chemistry Examination)

PART C: CANADIAN CHEMISTRY OLYMPIAD Final Selection Examination 2010

Free Response Development Problems (90 minutes)

This segment has five (5) questions. While students are expected to attempt all questions for a complete examination in 1.5 hours, it is recognized that backgrounds will vary and students will not be eliminated from further competition because they have missed parts of the paper.

Your answers are to be written in the spaces provided on this paper. All of the paper, including this cover page, along with a photocopy of Part A of the examination, is to be returned promptly to your Canadian Chemistry Olympiad Coordinator.

- PLEASE READ -

1. BE SURE TO COMPLETE THE INFORMATION REQUESTED AT THE BOTTOM OF THIS PAGE BEFORE BEGINNING PART C OF THE EXAMINATION.
2. STUDENTS ARE EXPECTED TO ATTEMPT ALL QUESTIONS OF PART A AND PART C. CREDITABLE WORK ON A LIMITED NUMBER OF THE QUESTIONS MAY BE SUFFICIENT TO EARN AN INVITATION TO THE NEXT LEVEL OF THE SELECTION PROCESS.
3. IN QUESTIONS WHICH REQUIRE NUMERICAL CALCULATIONS, BE SURE TO SHOW YOUR REASONING AND YOUR WORK.
4. ONLY NON-PROGRAMMABLE CALCULATORS MAY BE USED ON THIS EXAMINATION.
5. NOTE THAT A PERIODIC TABLE AND A LIST OF SOME PHYSICAL CONSTANTS WHICH MAY BE USEFUL CAN BE FOUND ON DATA SHEETS PROVIDED AT THE END OF THIS EXAMINATION.

PART A	(\quad) Correct Answers
25×1.6/040
PART C	
1./012
2./012
3./012
4./012
5./012
TOTAL/100

Name
(LAST NAME, Given Name; Print Clearly)
City
Date of birth \qquad E-Mail \qquad
Home Telephone () - \qquad Years at a Canadian high school \qquad
Number of chemistry courses at a Québec CÉGEP \qquad
Male \square Canadian Citizen \square Landed Immigrant \square Visa Student
Female \square Passport valid until November 2010
Nationality of Passport \qquad

INORGANIC CHEMISTRY

1. In 1899 , Ludwig Mond reported that the complex $\mathrm{Ni}(\mathrm{CO})_{4}$ could be obtained directly by passing a flow of carbon monoxide over impure nickel. Remarkably, the boiling point of this complex is $43^{\circ} \mathrm{C}$, which makes it one of the most volatile metal complexes known. Lord Kelvin (of temperature unit fame) said that Mond had "given wings to heavy metals". This unique property facilitates isolation of very pure nickel by distillation of the complex, followed by heating at a temperature over $180^{\circ} \mathrm{C}$ to remove carbon monoxide. However, the complex is highly toxic and great care must be taken while handling it.
(a). What is the oxidation state of nickel in the complex $\mathrm{Ni}(\mathrm{CO})_{4}$?
(b). Draw the best structure for carbon monoxide that obeys the octet rule around both the C and the O atom. Clearly include all lone pairs of electrons and formal charges if appropriate.
(c). What is the coordination geometry of the Ni atom in $\mathrm{Ni}(\mathrm{CO})_{4}$?

1 mark
(d). Heating nickel(II) oxide with molecular hydrogen at $200^{\circ} \mathrm{C}$ yields metallic nickel. Write a balanced equation for this reaction, including the state of matter for all reactants and products.

4 marks
(e). The stability of $\mathrm{Ni}(\mathrm{CO})_{4}$ can be in part explained by the saturation of the valence shell of nickel. Knowing this, what formula would you expect for the corresponding iron carbonyl complex? Briefly explain your answer.

PHYSICAL CHEMISTRY

2. Fullerenes are a family of megamolecules comprised entirely of carbon atoms that take various three-dimensional forms, including spheres, tubes, and planes. Much current research revolves around their potential nanotechnology applications: carbon nanotubes, for example, are being examined for their utility as both biomedical and electronic sensors.

Discovered by Sir Harry Kroto and his collaborators in 1985, C C_{60} (also known as buckminsterfullerene) was the first fullerene ever isolated. Buckminsterfullerene takes the shape of a truncated icosahedron, or in more familiar terms, a soccer ball - each vertex of a soccer ball is replaced by a carbon atom. Buckminsterfullerene contains a network of π-electrons that tries to delocalize throughout the ball. Unlike benzene, it is not a truly aromatic molecule, although it exhibits various aromatic properties. A molecular orbital diagram of buckminsterfullerene is shown below; the energies are in units of β.

(a). Is ground-state buckminsterfullerene diamagnetic? (circle the correct response).
Yes No
0.5 marks
(b). Based on your above answer, would buckminsterfullerene be attracted to or repelled by an external magnetic field? (circle the correct response).
Attracted
Repelled
0.5 marks
(c).How many bonding and antibonding orbitals are found in ground-state buckminsterfullerene? How many of each are occupied?

	Total orbitals	Occupied orbitals
Bonding		
Antibonding		

(d). How many ${ }^{13} \mathrm{C}$ NMR signals would be observed for buckminsterfullerene? In other words, how many structurally-different environments do carbon atoms find themselves in?
(e). Name the two most common forms of elemental carbon (allotropes) and the hybridization of the carbon atoms in each form.

Form of elemental carbon	Hybridization

(f). A mass spectrometric analysis of buckminsterfullerene measures the m / z mass-to-charge ratio of ionized $\mathrm{C}_{60}{ }^{+}$. The three largest peaks are observed at $\mathrm{m} / \mathrm{z}=720,721$, and 722 . Determine the theoretical ratio of the three m / z peaks mentioned above. The proportion of the $\mathrm{m} / \mathrm{z}=720$ peak is pre-normalized to 100 .

Isotope	Natural abundance
${ }^{12} \mathrm{C}$	98.89%
${ }^{13} \mathrm{C}$	1.11%
${ }^{14} \mathrm{C}$	negligible

m / z ratio	Relative proportion
720	100
721	
722	

2 marks

(g). Fullerenes can be doped with alkali metals to form superconductors. The fullerenes form a face-centred cubic structure - in other words, the $\mathrm{C}_{60}{ }^{\mathrm{x}}$ anions are located at both the vertices and the centres of the faces of the unit cell (shown below). The small alkali metal ions are located in the tetrahedral and octahedral holes. The radius of a fullerene anion is $4.98 \AA$. The density of one of the first such superconductors, prepared with potassium, is $1.987 \mathrm{~g} / \mathrm{cm}^{3}$. Showing all working, determine the formula of $\mathrm{K}_{\mathrm{x}} \mathrm{C}_{60}$.

ORGANIC CHEMISTRY

3. Consider the reaction scheme below.

(a). In the reaction scheme, compound $\mathbf{1}$ is converted to compound $\mathbf{2}$ under a particular set of conditions. Redraw compound 1 below and circle and name the functional group that reacts when $\mathbf{1}$ is converted to 2 .
(b). What is the molecular formula of compound 1 ?

1 mark

(c). In the reaction scheme, complete each box to show either the major product of the reaction or a reasonable set of reaction conditions to achieve the shown transformation. Show relative stereochemistry where appropriate.

ANALYTICAL CHEMISTRY

4. This question is about determining base and acid concentrations under different conditions.
(a). Calculate the volume of 0.80 M NaOH solution that should be added to a $250 \mathrm{~cm}^{3}$ aqueous solution containing $3.48 \mathrm{~cm}^{3}$ of concentrated phosphoric acid in order to prepare a pH 7.4 buffer. State the answer to three significant figures. For aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}$: purity $=85 \%$ by mass, density $=1.69 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{pK}_{1}=2.15, \mathrm{pK}_{2}=7.20, \mathrm{pK}_{3}=12.44$.
(b). The efficacy of a drug is greatly dependent on its ability to be absorbed into the blood stream. Acid-base chemistry plays an important role in drug absorption.

Calculate the ratio of the total concentration of aspirin (acetylsalicylic acid, $\mathrm{pK}_{\mathrm{a}}=3.52$, $\left.[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]\right)$in the blood to that in the stomach. Assume that the ionic form (A^{-}) of a weakly acidic drug does not penetrate the membrane, whereas the neutral form (HA) freely crosses the membrane. Also assume that equilibrium is established so that the concentration of HA is the same on both sides.

BIOLOGICAL CHEMISTRY

5. An amino acid is one of the fundamental molecules found in living organisms. A general structure of an amino acid is given below. R denotes a side chain group of some kind (see attached data sheet).

(a). In an amino acid, the pK_{a} of the amino group is about 10 while the pK_{a} of the carboxylic acid group is about 3 . Assuming there is no charge at the side chain (R) group, state the net charge on the molecule under the following conditions:
(i). $\mathrm{pH}=7.0$
(ii). $\mathrm{pH}=2.0$
(iii). $\mathrm{pH}=11.0$
(b). Amino acids can form chain-like structures called peptides through so-called "peptide linkages". An example of a peptide is given below.

(c). Write a general chemical equation to show peptide bond formation from two amino acids. Simplify each amino acid as $\mathrm{H}_{2} \mathrm{NCHRCOOH}$.
(d). Write the amino acid sequence of the peptide given above (hint: identify the amino acid side chain groups and find the appropriate three letter codes (e.g. "Gly" for glycine) on the attached data sheet).
(e). In the stomach, two types of cells work together to help the digestion of dietary proteins. Firstly, chief cells secrete pepsinogen that is activated in an acidic environment into the enzyme pepsin, which digests food peptides. Secondly, parietal cells secrete protons via potassium-transporting ATPase (also called a proton pump) to regulate the pH of the stomach. The following is a partial sequence of the active site of pepsin (see attached data sheet for the amino acid three letter codes and side chain pK_{a} values).

(i). What is the net charge of this partial peptide at $\mathrm{pH}=1.5$?

1 mark
(ii). What is the net charge of this partial peptide at $\mathrm{pH}=5.0$?

1 mark
(iii). Briefly explain why pepsin becomes inactive at $\mathrm{pH}=5.0$.
1.5 marks
(f). Excessive acid production in the stomach irritates the stomach lining and causes many problems including ulcers. A way to treat this condition is to block the action of the proton pump. Below is the structure of a drug (omeprazole) that inhibits the action of the proton pump.

The drug is inactive in this form until it is activated by the acid in the stomach. On the above structure, circle all the atoms that could act as a proton acceptor during the activation.

Data Sheet

Physical Constants

Name	Symbol	Value
Avogadro's constant	N_{A}	$6.0221 \times 10^{23} \mathrm{~mol}^{-1}$
Boltzmann constant	k_{B}	$1.3807 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	R	$8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Faraday constant	F	$96485 \mathrm{C} \mathrm{mol}^{-1}$
Speed of light	c	$2.9979 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's constant	h	$6.6261 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Standard pressure	p°	$10^{5} \mathrm{~Pa}$
Atmospheric pressure	$p_{\text {atm }}$	$1.01325 \times 10^{5} \mathrm{~Pa}$
Zero of the Celsius scale		273.15 K

Amino Acids

Small

Glycine (Gly, G)
MW: 57.05

Alanine (Ala, A)
MW: 71.09

Nucleophilic

Serine (Ser, S)
MW: 87.08, $\mathrm{pK}_{\mathrm{a}} \sim 16$

Threonine (Thr, T)
MW: 101.11, pK a^{\sim} ~ 16

Methionine (Met, M) MW: 131.19

Cysteine (Cys, C)
MW: 103.15, $\mathrm{pK}_{\mathrm{a}}=8.35$

Proline (Pro, P) MW: 97.12

Acidic

Aspartic Acid (Asp, D)
MW: $115.09, \mathrm{pK}_{\mathrm{a}}=3.9$

Lysine (Lys, K)
Arginine (Arg, R)
MW: $156.19, \mathrm{pK}_{\mathrm{a}}=12.48$

1	2	Data Sheet															18
${ }^{1} \underset{1.008}{H}$												13	14	15	16	17	${ }_{2}^{2} \mathrm{He}$
$3_{6.941}^{3}$	$\begin{aligned} & 4 \\ & \mathrm{Be} \end{aligned}$ 9.012	Fiche de données										${ }_{5}^{5}{ }_{10}^{\text {B }}$ B	${ }_{12}^{6}$ C	${ }_{14}^{7} \mathrm{~N}$	${ }^{8} \mathbf{0}$	${ }_{18}^{9} \mathrm{~F}$	10 Ne 20.180
		Relative Atomic Masses (1985 IUPAC) *For the radioactive elements the atomic mass of an important isotope is given					*Dans le cas des éléments radioactifs, la masse atomique fournie est celle d'un isotope important										
22.9	${ }_{24.305}$	3	4	5	6	7	8	9	10	11	12	26.982	${ }_{28.086}$	30.974	32.07	35.453	39.948
${ }^{19} \mathrm{~K}$	$\begin{array}{\|c} 20 \\ \mathrm{Ca} \end{array}$	$\begin{array}{\|c} 21 \\ \mathrm{Sc} \end{array}$	${ }^{22} \mathrm{Ti}$	${ }^{23} \mathrm{~V}$	${ }^{24} \mathrm{Cr}$	$\sqrt{25} \mathrm{Mn}$	$\begin{array}{\|c} 26 \\ \mathrm{Fe} \end{array}$	${ }^{27} \mathrm{Co}$	${ }^{28} \mathrm{Ni}$	${ }^{29} \mathrm{Cu}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	${ }^{31} \mathrm{Ga}$		As			${ }^{36} \mathrm{Kr}$
${ }_{\text {39.098 }}$	${ }_{40} \mathrm{Ca}^{08}$	44.956	47.88	50.942	51.996	IVI 54.938	55.847	58.93	$\mathrm{Fs.69}^{\mathrm{N},}$	c3.55	65.39	69.72	72.61	${ }_{74.922}$	\%8.96	79.904	${ }_{83.80}$
37 Rb	$\stackrel{38}{\mathrm{Sr}}$	${ }^{39} \mathrm{Y}$	${ }^{40} \mathrm{Zr}$	${ }^{41} \mathrm{Nb}$	Mo	${ }^{43}$ Tc	${ }^{44} \mathrm{Ru}$		${ }^{46} \mathrm{Pd}$	${ }^{47} \mathrm{Ag}$	${ }^{48} \mathrm{Cd}$	${ }^{49}$ In	${ }^{50} \mathrm{Sn}$	${ }^{51} \mathrm{Sb}$	52 Te	53	54 Xe
${ }_{85.468}$	${ }_{87.62}$	88.906	91.22	92.906	95.94	(98)	101.07	102.906	106.42	107.87	112.41	114.82	118.71	121.76	${ }_{127.60}$	126.90	131.29
${ }^{55}$ Cs	${ }^{56} \mathrm{Ba}$	${ }^{57}$ La	$\overline{72} \mathrm{Hf}$	${ }^{73} \mathrm{Ta}$	${ }^{74} \mathrm{~W}$	${ }^{75}$	${ }^{76}$	${ }^{77}$ Ir	${ }^{78} \mathrm{Pt}$	${ }_{79}^{79}$	$\stackrel{80}{\mathrm{Hg}}$	${ }^{81} \mathrm{TI}$	${ }_{8}^{82}$	${ }_{83}^{83}$	${ }^{84}$	${ }^{85}$ At	86 $R n$
132.905	${ }_{137.33}$	138.91	178.49	180.948	183.85	186.2	190.2	192.2	195.08	${ }_{196.967}$	200.59	204.37	207.2	208.980	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110								
$\underset{12023}{\mathrm{Fr}}$	Ra	Ac ${ }_{227.03}$	Rf	Db (262)	Sg	Bh ${ }^{(262)}$	Hs	Mt	Ds								

${ }^{58} \mathrm{Ce}$	$\underset{140.91}{\mathrm{Pr}}$	${ }_{144.24}^{\mathrm{No}} \mathrm{Nd}$	$\begin{array}{\|l\|} \hline 61 \\ \mathrm{Pm}_{(145)} \end{array}$	$\begin{aligned} & 62 \\ & \mathrm{Sm}_{1504} \end{aligned}$	${ }_{151.97}^{63}$	${ }_{164}^{64}$	$\begin{array}{\|c\|} \hline 65 \\ \mathrm{~Tb} \\ \hline 15.93 \end{array}$	${ }^{66} \mathrm{Dy}$	${ }_{164}^{67}$	${ }_{168}^{68}$	$\mathrm{Tm}_{168.934}^{69}$	${ }_{173}^{\mathrm{Y}_{173.04}}$	${ }_{171}^{\mathrm{Lr}} \mathrm{Lu}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
$\underset{\text { 232.038 }}{ }$	Pa 231.04	$\underset{238.03}{U}$	${ }_{237.05}^{N_{2}}$	$\underset{(244)}{\mathrm{Pu}}$	$\underset{(243)}{A_{2}}$	$\underset{(247)}{\mathrm{Cm}}$	Bk (247)	$\underset{(251)}{\text { Cf }}$	Es ${ }_{(252)}$	$\underset{(257)}{ }{ }_{c}$	Md (258)	$\begin{gathered} \text { (259) } \\ \hline \end{gathered}$	$\underset{(260)}{\mathrm{Lr}}$

\(\left.$$
\begin{array}{ll} & \begin{array}{l}\text { Symbol } \\
\text { Symbole }\end{array}
$$

amu\end{array}\right\}\)| Atomic mass unit | a_{0} |
| :--- | :--- |
| Avogadro's number | k |
| Bohr radius | e |
| Boltzmann constant | K_{W} |
| Charge of an electron | F |
| Dissociation constant $\left(\mathrm{H}_{2} \mathrm{O}\right)$ | R |
| Faraday's constant | m_{e} |
| Gas constant | m_{n} |
| Mass of an electron | m_{p} |
| Mass of a neutron | h |
| Mass of a proton | c |

$1 \AA$	$=1 \times 10^{-8} \mathrm{~cm}$
1 eV	$=1.60219 \times 10^{-19} \mathrm{~J}$
1 cal	$=4.184 \mathrm{~J}$
1 atm	$=101.325 \mathrm{kPa}$
1 bar	$=1 \times 10^{5} \mathrm{~Pa}$

Value
Quantité numérique
$1.66054 \times 10^{-27} \mathrm{~kg}$
$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
$5.292 \times 10^{-11} \mathrm{~m}$
$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$1.60218 \times 10^{-19} \mathrm{C}$
$10^{-14}\left(25^{\circ} \mathrm{C}\right)$
$96485 \mathrm{C} \mathrm{mol}^{-1}$
$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$9.10939 \times 10^{-31} \mathrm{~kg}$ $5.48580 \times 10^{-4} \mathrm{amu}$ $1.67493 \times 10^{-27} \mathrm{~kg}$ 1.00866 amu
$1.67262 \times 10^{-27} \mathrm{~kg} \quad$ Masse d'un proton
1.00728 amu
$6.62608 \times 10^{-34} \mathrm{~J}$ s Constante de Planck
$2.997925 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$

Unité de masse atomique
Nombre d'Avogadro
Rayon de Bohr
Constante de Boltzmann
Charge d'un électron
Constante de dissociation de l'eau $\left(\mathrm{H}_{2} \mathrm{O}\right)$
Constante de Faraday
Constante des gaz

Masse d'un électron

Masse d'un neutron

Vitesse de la lumière

