* *	$\begin{array}{l}\text { Australian } \\ \text { Science }\end{array}$
*	Olympiads

2022 AUSTRALIAN SCIENCE OLYMPIAD EXAM CHEMISTRY

TO BE COMPLETED BY THE STUDENT. USE CAPITAL LETTERS.

Student Name: \qquad
Home Address: \qquad
Post Code: \qquad
Telephone: (..........)). \qquad Mobile:
E-Mail: \qquadDate of Birth:
\qquad /....../...... \square Male \square Female \square Unspecified \quad Year $10 \square$ Year $11 \square$ Other:
\qquad

Name of School: State:

Examiners Use Only:

2022 AUSTRALIAN SCIENCE OLYMPIAD EXAM CHEMISTRY

Time Allowed
Reading Time: 10 minutes
Examination Time: 120 minutes

INSTRUCTIONS

- Attempt all questions in ALL sections of this paper.
- Permitted materials: non-programmable, non-graphical calculator, pens, pencils, erasers and a ruler.
- Marks will not be deducted for incorrect answers.

MARKS

- SECTION A
- SECTION B

15 multiple choice questions
3 short answer questions

Total marks for the paper
120 marks

Integrity of Competition

If there is evidence of collusion or other academic dishonesty, students will be disqualified. Markers' decisions are final.

Avogadro constant (N) $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$	Velocity of light (c) $=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
1 faraday $=96485$ coulombs	Density of water at $25^{\circ} \mathrm{C}=0.9971 \mathrm{~g} \mathrm{~cm}^{-3}$
$1 \mathrm{~A}=1 \mathrm{C} \mathrm{s}^{-1}$	Acceleration due to gravity $=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Universal gas constant (R) $8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $8.206 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	1 newton (N) $=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$
Planck's constant (h) $=6.626 \times 10^{-34} \mathrm{~J}$ s	1 pascal (Pa) $=1 \mathrm{Nm}^{-2}$
Molar volume of ideal gas - at $0^{\circ} \mathrm{C}$ and $100 \mathrm{kPa}=22.71 \mathrm{~L}$ - at $25^{\circ} \mathrm{C}$ and $100 \mathrm{kPa}=24.79 \mathrm{~L}$ - at $0^{\circ} \mathrm{C}$ and $101.3 \mathrm{kPa}=22.41 \mathrm{~L}$ - at $25^{\circ} \mathrm{C}$ and $101.3 \mathrm{kPa}=24.47 \mathrm{~L}$	$\begin{aligned} & \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \\ & \mathrm{pH}+\mathrm{pOH}=14.00 \text { at } 25^{\circ} \mathrm{C} \\ & K_{\mathrm{a}}=\left\{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]\right\} /[\mathrm{HA}] \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10}\left\{\left[\mathrm{~A}^{-}\right] /[\mathrm{HA}]\right\} \\ & \mathrm{PV}=\mathrm{nRT} \\ & \mathrm{E}=\mathrm{h} v \\ & \hline \end{aligned}$
Surface area of sphere $\mathrm{A}=4 \pi \mathrm{r}^{2}$	$\mathrm{c}=\mathrm{v} \lambda$

Periodic Table of Elements

$\underset{1.008}{\underset{1}{H}}$	2											13	14	15	16	17	2 He 4.003
$\underset{6.94}{\stackrel{3}{\mathrm{Li}}}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 901 \end{gathered}$											5 B 10.81	$\underset{12.01}{{\underset{12}{6}}_{C}^{2}}$	$\underset{14.01}{\mathrm{~N}}$	$\underset{\underbrace{8}_{16.00}}{8}$	$\stackrel{9}{\mathrm{~F}} \underset{19.00}{ }$	$\begin{aligned} & 10 \\ & \mathrm{Ne} \\ & 20.18 \end{aligned}$
$\begin{array}{\|c} \hline 11 \\ \mathrm{Na} \\ 22.99 \end{array}$	$\begin{gathered} 12 \\ \mathrm{Mg}_{24 \cdot 31} \\ \hline \end{gathered}$	3	4	5	6	7	8	9	10	11	12	$\begin{gathered} \hline{ }_{c}^{13} \\ \mathrm{Al}_{26.98} \end{gathered}$		$\begin{array}{\|c} \hline 15 \\ \underset{30.97}{P} \\ \hline \end{array}$	$\underset{32.07}{{\underset{3}{46}}_{\text {S }}^{2}}$	${ }_{35.45}^{17}$	18 Ar 39.95
$\begin{gathered} \hline 19 \\ \mathrm{~K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \hline \mathrm{Ca} \\ \mathrm{Can} 0 \end{gathered}$	$\begin{array}{\|c} \hline 21 \\ \mathrm{~S}_{44.96} \\ \hline \end{array}$	$\underset{\substack{22 \\{ }_{47.87}^{22}}}{i_{i}^{\prime}}$	$\begin{gathered} 2^{23} \\ V \\ 50.94 \end{gathered}$	$\begin{array}{\|c} \stackrel{24}{{ }_{52}}{ }_{52.00} \end{array}$	$\begin{gathered} \hline{ }_{25}^{25} \\ \hline 54.94 \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ \text { Fe } \\ 55.85 \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { Co } \\ \text { 58.93 } \end{gathered}$	$\begin{array}{\|c} \hline{ }_{58}^{28} \\ \text { N8.69 } \end{array}$	$\underset{63.55}{\mathrm{C}_{29}^{29}}$	$\begin{gathered} 30 \\ \mathrm{Zn} \\ \mathrm{Zn} .38 \end{gathered}$	$\begin{array}{\|c\|} \hline 31 \\ \mathrm{Ga} \end{array}$ 69.72	$\begin{array}{\|l} \hline 32 \\ \mathrm{Ge} \end{array}$	As ${ }_{74} \mathrm{As}^{9}$	34 88.97	35 Br 79.90	${ }_{83}{ }_{8}^{36} \mathrm{~K}$
$\begin{gathered} \hline 37 \\ \mathrm{R}_{85.47} \end{gathered}$		$\begin{gathered} \hline 39 \\ Y \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ 91.22 \end{gathered}$	$\begin{aligned} & \hline 41 \\ & \mathrm{Nb} \\ & 92.91 \end{aligned}$	$\begin{array}{\|c} 42 \\ \mathrm{Mo} \\ 9595 \\ \hline 9 . \end{array}$	$\begin{array}{\|l} \hline 43 \\ \text { Tc } \end{array}$	$\begin{array}{\|c\|} \hline 44 \\ \mathrm{R}_{101.1} \end{array}$	$\begin{aligned} & 45 \\ & \mathrm{R}^{4} \mathrm{n} \\ & 1029 \end{aligned}$	$\begin{aligned} & 46 \\ & \hline \mathrm{Pd} \\ & \hline 106 \end{aligned}$	$\begin{array}{\|l\|} \hline 47 \\ \mathrm{Ag} \end{array}$	$\begin{gathered} 48 \\ \mathrm{Cd}_{112.4} \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ \ln _{14.8} \end{gathered}$	${ }_{\text {S }}^{50}$	$\begin{aligned} & 51 \\ & \mathrm{~S}_{1218} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 52 \\ \mathrm{Te} \\ 127.6 \end{array}$	$\stackrel{53}{1}$	${ }_{131.3}^{\text {¢4 }}$
$\begin{gathered} 55 \\ \text { Cs } \\ \text { C32.9 } \end{gathered}$	$\begin{aligned} & \hline 56 \\ & \mathrm{Ba}_{137.3} \\ & \end{aligned}$	57-71	$\begin{gathered} 72 \\ { }_{178.5} \\ \hline \end{gathered}$	$\begin{gathered} 73 \\ \hline \text { Ta } \\ 180.9 \end{gathered}$	$\begin{array}{\|c\|} \hline 74 \\ W_{183.8} \end{array}$	$\begin{array}{\|c\|} \hline 75 \\ R_{186} \\ 186 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 76 \\ \mathrm{O}^{190} \\ 190.2 \end{array}$	$\begin{gathered} 77 \\ 19 \\ 192.2 \end{gathered}$	$\begin{array}{\|c} \hline 78 \\ \mathrm{Pt}_{1} \\ 195.1 \end{array}$	$\begin{aligned} & 79 \\ & \mathrm{Au} \\ & \text { 197.0 } \end{aligned}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.6 \end{gathered}$	$\begin{array}{\|c\|} \hline 81 \\ \mathrm{~T} 1 \\ 204.4 \end{array}$	$\begin{array}{\|c} 82 \\ \mathrm{~Pb} \\ 2072 \end{array}$	$\begin{gathered} 83 \\ \mathrm{Bi}_{209}^{8} \\ 209.0 \end{gathered}$	$\begin{array}{\|l\|} \hline 84 \\ \hline \text { Po } \end{array}$	$\begin{aligned} & 85 \\ & \mathrm{At} \end{aligned}$	86 Rn
$\begin{aligned} & 87 \\ & \mathrm{Fr} \end{aligned}$	${ }_{8}^{88}$	89-103	$\begin{array}{\|l\|} \hline 104 \\ \mathrm{Rf} \end{array}$	$\begin{aligned} & 105 \\ & \mathrm{Db} \end{aligned}$	$\stackrel{106}{\text { Sg }}$	$\begin{array}{\|l\|} \hline 107 \\ \mathrm{Bh} \end{array}$	$\begin{aligned} & 108 \\ & \mathrm{Hs} \end{aligned}$	$\begin{array}{\|l} 109 \\ \mathrm{Mt} \end{array}$	$\begin{array}{\|l\|} \hline 110 \\ \text { Ds } \end{array}$	Rg	$\begin{array}{\|l\|} \hline 112 \\ \mathrm{Cn} \end{array}$	${ }^{113} \mathrm{Nh}$	${ }^{114}$	${ }^{115}$	116	${ }^{117}$	${ }^{118}$

$\begin{aligned} & \text { 57 } \\ & \text { La } \\ & \hline 138.9 \end{aligned}$	$\begin{array}{\|c} \hline 5 \\ \text { Ce } \\ 140.1 \end{array}$	$\begin{array}{\|c} \hline 59 \\ \mathrm{Pr} \\ 140.9 \\ \hline \end{array}$	$\begin{gathered} 60 \\ { }^{60} \\ { }_{144.2} \end{gathered}$	$\begin{gathered} 61 \\ P^{61} \end{gathered}$	$\begin{gathered} { }_{\substack{62 \\ S_{150.4} \\ \hline}} \end{gathered}$	$\begin{gathered} 63 \\ \text { En }_{1520}^{6 u} \\ \hline \end{gathered}$	$\begin{gathered} 64 \\ \mathrm{Gdd} \\ 157.3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 65 \\ \hline \\ \hline 158 \\ \hline 150 \end{gathered}$	$\begin{gathered} 66 \\ \mathrm{D}_{162.5} \end{gathered}$	$\begin{gathered} \hline 67 \\ \hline 164.9 \\ \hline 160 \end{gathered}$		$\begin{gathered} 69 \\ \mathrm{~T}_{168.9} \end{gathered}$	$\begin{gathered} 70 \\ \text { Yb } \\ \text { 173.0 } \end{gathered}$	71 14 1750
${ }^{89}$	90	91	92	${ }^{93}$	${ }^{94}$	95	96	97	${ }^{98}$	99	100	101	102	103
Ac	Th	$\underset{2310}{ }$	$\underset{238.0}{U}$	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

SECTION A: MULTIPLE CHOICE USE THE ANSWER SHEET PROVIDED

1. Sodium sulfite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$ reacts with hydrochloric acid to produce sodium chloride, sulfur dioxide and water. What volume (in mL) of $10.1 \mathrm{~mol} \mathrm{~L}^{-1}$ hydrochloric acid is required for complete reaction with 32.6 g of sodium sulfite?
A. 12.8 mL
B. $\quad 17.1 \mathrm{~mL}$
C. 25.6 mL
D. 51.2 mL
E. $\quad 102.4 \mathrm{~mL}$
2. Which of the following pairs lists elements in order of increasing electronegativity?
A. $\mathrm{Na}, \mathrm{F}, \mathrm{O}, \mathrm{N}$
B. $\mathrm{Na}, \mathrm{O}, \mathrm{F}, \mathrm{N}$
C. $\mathrm{Na}, \mathrm{N}, \mathrm{O}, \mathrm{F}$
D. $\mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{Na}$
E. $\mathrm{Na}, \mathrm{O}, \mathrm{N}, \mathrm{F}$
3. Which of the following contains molecules with linear molecular geometry in the solid state?
A. CO_{2}
B. KCl
C. MgO
D. GeO_{2}
E. MgCl_{2}
4. A substance conducts electricity well when liquid but not when solid. Which of the following could this substance be? Select all that apply.
A. copper
B. sodium nitrate
C. argon
D. carbon tetrachloride
E. boron nitride
5. Calculate the concentration of chloride ions in the resulting solution when 50.0 mL of $2.68 \mathrm{~mol} \mathrm{~L}^{-1}$ calcium chloride solution is mixed with 150 mL of $1.13 \mathrm{~mol} \mathrm{~L}^{-1}$ silver nitrate solution.
A. $\quad 0.49 \mathrm{~mol} \mathrm{~L}^{-1}$
B. $\quad 0.67 \mathrm{~mol} \mathrm{~L}^{-1}$
C. $0.85 \mathrm{~mol} \mathrm{~L}^{-1}$
D. $1.34 \mathrm{~mol} \mathrm{~L}^{-1}$
E. $\quad 1.55 \mathrm{~mol} \mathrm{~L}^{-1}$
6. What is the percentage by mass of fluorine in NF_{3} ?
A. 31.13%
B. 57.56%
C. 73.06%
D. 80.27%
E. 87.15%
7. One step in the manufacture of aluminium is the production of aluminium hydroxide by the following process:
$2 \mathrm{NaAlO}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$

What mass of aluminium hydroxide can be produced from a mixture of 40 g NaAlO 2 , $15 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and $10 \mathrm{~g} \mathrm{CO}_{2}(\mathrm{~g})$?
A. $\quad 17.7 \mathrm{~g}$
B. 21.6 g
C. 35.4 g
D. 38.1 g
E. 43.3 g
8. How many hydrogen atoms are there in 0.2 mol of ammonium sulfate?
A. 6.0×10^{22}
B. 1.2×10^{23}
C. 2.4×10^{23}
D. 4.8×10^{23}
E. 9.6×10^{23}
9. Which of the following molecules has the highest boiling point?
A. CF_{4}
B. CCl_{4}
C. CBr_{4}
D. CI_{4}
E. CH_{4}
10. Which of the following has the largest atomic radius?
A. Rb
B. Xe
C. K
D. Kr
E. Sb
11. Element A has 3 valence electrons and element B has 6 valence electrons. Elements A and B are in the same period of the Periodic Table.

What is the likely formula of the compound that elements A and B form together?
A. AB
B. $\mathrm{A}_{2} \mathrm{~B}_{3}$
C. AB_{2}
D. $\mathrm{A}_{2} \mathrm{~B}$
E. $\mathrm{A}_{3} \mathrm{~B}_{3}$
12. Which of the following substances has the highest boiling point?
A. bromine
B. magnesium bromide
C. phosphorus tribromide
D. hydrogen bromide
E. hydrogen
13. Rubidium forms a number of oxides, one of which contains 78.08% rubidium by mass. What is the empirical formula of this oxide?
A. $\mathrm{Rb}_{6} \mathrm{O}$
B. RbO
C. RbO_{2}
D. $\mathrm{Rb}_{2} \mathrm{O}$
E. $\mathrm{Rb}_{2} \mathrm{O}_{3}$
14. Select all molecules that have the same molecular shape.
A. CO_{2}
B. BF_{3}
C. $\mathrm{Cl}_{2} \mathrm{O}$
D. $H_{2} \mathrm{~S}$
E. CH_{4}
15. 500 mL of a $0.10 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium chloride solution is prepared. To this sodium chloride solution, 500 mL of $0.10 \mathrm{~mol} \mathrm{~L}^{-1}$ lithium chloride solution is added.

Which of the following describes the changes in concentration of sodium and chloride ions upon addition of the lithium chloride solution?

$\left[\mathrm{Na}^{+}\right]$

A. Decreases
B. Stays the same
C. Increases
$\left[\mathrm{Cl}^{-}\right]$
A. Decreases
B. Stays the same
C. Increases

Question 16

Basic carbonate minerals are found widely in nature and, as their name suggests, contain carbonate ions $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ together with other basic ions such as hydroxide $\left(\mathrm{OH}^{-}\right)$or oxide $\left(\mathrm{O}^{2-}\right)$ and various metal cations.

Carbonate content can be determined by measuring the mass of carbon dioxide given off when the mineral is treated with excess nitric acid.
(a) Calculate the molar mass of the mineral with formula $\mathrm{Pb}_{10} \mathrm{O}_{3}\left(\mathrm{CO}_{3}\right)_{6}(\mathrm{OH})_{2}$
$M M=207.2 \times 10+16 \times 3+60.01 \times 6+17.008 \times 2=2514.08 \mathrm{~g} \mathrm{~mol}^{-1}$
(1 mark)
(b) Balance the chemical equation for the reaction of this mineral with excess nitric acid.
$\mathrm{Pb}_{10} \mathrm{O}_{3}\left(\mathrm{CO}_{3}\right)_{6}(\mathrm{OH})_{2}+20 \mathrm{HNO}_{3} \rightarrow \mathbf{1 0} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}$
(1 mark total, 0.25 mark each non-mineral coefficient)
(c) Calculate the mass of carbon dioxide released when 10.00 g of this mineral reacts with excess nitric acid.

```
m(CO2)}=6\times44.01\times10/(207.2\times10+16\times3+60.01\times6+17.008\times2
= 1.050 g
(3 marks)
```

(d) Calculate the chemical amount (in mol) of nitric acid required to react with 10.00 g of this mineral.

$$
n\left(\mathrm{HNO}_{3}\right)=20 \times 10 /(207.2 \times 10+16 \times 3+60.01 \times 6+17.008 \times 2)(1 \text { mark })
$$

Basic carbonate minerals undergo thermal decomposition, forming metal oxides and releasing carbon dioxide and water, whose total mass can be determined by weighing.
(e) Balance the chemical equation for thermal decomposition of this mineral.
$\mathrm{Pb}_{10} \mathrm{O}_{3}\left(\mathrm{CO}_{3}\right)_{6}(\mathbf{O H})_{2} \rightarrow \mathbf{1 0 ~ P b O}+\mathbf{6} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(1 mark total, 0.25 mark each coefficient)
(f) Calculate the total mass lost when 10.00 g of this mineral is thermally decomposed.


```
= 1.122 g
(2 marks)
```

A sample of a different mineral is analysed by the same methods. This mineral also contains only $\mathrm{Pb}^{2+}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{OH}^{-}$and O^{2-} ions.

When a 5.000 g sample of this mineral is treated with 25.00 mL of $2.000 \mathrm{~mol} \mathrm{~L}^{-1}$ nitric acid $\left(\mathrm{HNO}_{3}\right), 0.5214 \mathrm{~g}$ of carbon dioxide is released, and 0.01051 mol of the acid remains.

When subjected to thermal decomposition, 5.000 g of this mineral loses 0.5926 g .
(g) Calculate the chemical amount (in mol or mmol) of nitric acid that reacts with the 5.000 g sample of this mineral.

$$
n\left(\mathrm{HNO}_{3}, \text { total }\right)=25.00 / 1000 \times 2.000=0.05000 \mathrm{~mol}
$$

$\mathrm{n}($ acid, reacted with mineral) $=0.05000-0.01051=0.03949 \mathrm{~mol}$
(h) Calculate the chemical amounts (in mol or mmol) of carbon dioxide and water released in the thermal decomposition.

```
n(CO2) = 0.5214 / 44.01 = 0.01185 mol
m(H2O)=0.5926-0.5214 = 0.0712 g
n(H2O)=0.0712 / 18.016 = 0.00395 mol
```

(i) Calculate the chemical amounts (in mol or mmol) of $\mathrm{Pb}^{2+}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{OH}^{-}$present in the 5.000 g sample of this mineral.

```
n(CO}\mp@subsup{}{3}{2-})=0.01185 mo
n(OH-)}=2\times0.00395=0.00790 mol
n(Pb}\mp@subsup{}{}{2+})=0.03949 / 2 = 0.01963 mol
```

(j) Calculate the empirical formula of this mineral.

```
n(O}\mp@subsup{}{}{2-})=2\times\mathbf{n}(\mp@subsup{\mathbf{Pb}}{}{2+})-2\times\mathbf{n}(\mp@subsup{\textrm{CO}}{3}{2-})-1\timesn(\mp@subsup{\mathbf{OH}}{}{-})=0.003924 mo
(Can also do O}\mp@subsup{}{}{2-}\mathrm{ by mass balance)
For the simplest ratio, divide by n(O
```

A related series of water soluble minerals contain only $\mathrm{Na}^{+}, \mathrm{HCO}_{3}{ }^{-}$and $\mathrm{CO}_{3}{ }^{2-}$ ions. Such minerals can be analysed by reaction with hydrochloric acid under two different reaction conditions, which we will refer to as \mathbf{A} and \mathbf{B}.

Reaction A

$\mathrm{CO}_{3}{ }^{2-}$ ions present react to form HCO_{3}^{-}ions only; $\mathrm{HCO}_{3}{ }^{-}$ions present do not react further. $\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3}^{-}$

Reaction B

Both $\mathrm{CO}_{3}{ }^{2-}$ ions and HCO_{3}^{--}ions present react completely to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
A 6.000 g sample of a mineral containing only $\mathrm{Na}^{+}, \mathrm{HCO}_{3}{ }^{-}$and $\mathrm{CO}_{3}{ }^{2-}$ ions is dissolved in water to form 100 mL of "dissolved mineral solution".
20.00 mL of "dissolved mineral solution" requires 10.32 mL of $0.5012 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ in Reaction A, and 36.12 mL of $0.5012 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ in Reaction \mathbf{B}.
(k) Calculate the chemical amount of HCl consumed in reaction \mathbf{A}. (in mol or mmol)
$\mathbf{n}(\mathrm{HCl}, \mathrm{A})=10.32 / 1000 \times 0.5012=0.005172 \mathrm{~mol}$
(l) Calculate the chemical amount of $\mathrm{CO}_{3}{ }^{2-}$ ions present in 20.00 mL of the "dissolved mineral solution".
$n\left(\mathrm{CO}_{3}{ }^{2-}\right)=10.32 / 1000 \times 0.5012=0.005172 \mathrm{~mol}$
(m) Calculate the chemical amount of $\mathrm{HCO}_{3}{ }^{-}$ions present in 20.00 mL of the "dissolved mineral solution".

```
n(HCl, B) = 36.12 / 1000 × 0.5012 = 0.01810 mol
n(HCl reacting with CO33--})=2\times10.32/1000\times0.5012=0.01034 mol
n(HCO3}\mp@subsup{)}{}{-})=36.12/1000\times0.5012-2\times10.32/1000\times0.5012=0.007759 mol
```

(n) Calculate the empirical formula of this mineral.
$\mathbf{n}\left(\mathrm{HCO}_{3}{ }^{-}\right) / \mathbf{n}\left(\mathrm{CO}_{3}{ }^{2-}\right)=\mathbf{0 . 0 7 7 5 9} \mathrm{mol} / 0.005172 \mathrm{~mol}=1.5$
Simplest ratio is $3 \mathrm{HCO}_{3}{ }^{-}: 2 \mathrm{CO}_{3}{ }^{2-}$
Charge balance then requires $7 \mathrm{Na}^{+}$.
So the empirical formula is $\mathrm{Na} 7\left(\mathrm{HCO}_{3}\right)_{3}\left(\mathrm{CO}_{3}\right)_{2}$.

Question 17

${ }^{1}$ H Nuclear Magnetic Resonance (NMR) is an extremely useful analytical technique as it can convey detailed information about the structure of molecules.

The number of signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of a given molecule corresponds to the number of unique hydrogen atom environments in that molecule.

For example, chloromethane $\left(\mathrm{CH}_{3} \mathrm{Cl}\right)$ has three hydrogen atoms in the same environment (i.e. attached to the same atom), so there is only one signal in its ${ }^{1} \mathrm{H}$ NMR spectrum.

By contrast, methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ has two different hydrogen atom environments, labelled H_{a} and H_{b} in the diagram below.

- The H_{a} atoms are bonded to the carbon atom, whereas H_{b} is bonded to the oxygen atom.

2-chloropropane also has two different hydrogen atom environments, labelled H_{a} and H_{b} in the diagram below.

- the $6 \mathrm{H}_{\mathrm{a}}$ atoms are present in two equivalent CH_{3} groups on either end of the molecule.
- The single H_{b} atom is bonded to the central carbon atom.

1-chloropropane has three different hydrogen atom environments, labelled H_{a}, H_{b} and H_{c}.

(a) How many signals would you expect in the ${ }^{1} \mathrm{H}$ NMR spectrum of the following molecule?

2
(b) How many signals would you expect in the ${ }^{1} \mathrm{H}$ NMR spectrum of the following molecule?

2
(c) How many signals would you expect in the ${ }^{1} \mathrm{H}$ NMR spectrum of the following molecule?

3

Use the following structures to answer the questions on this page.
A.

B.

C.

D.

E.

F.

G.

H.

1.

J.

K.

L.

(d) Using the identifying letters, which of the above molecules would you expect to have one signal in their ${ }^{1} \mathrm{H}$ NMR spectrum?

A, G, J
(e) Using the identifying letters, which of the above molecules would you expect to have two signals in their ${ }^{1} \mathrm{H}$ NMR spectrum?

B, E, I
(f) Using the identifying letters, which of the above molecules would you expect to have four signals in their ${ }^{1} \mathrm{H}$ NMR spectrum?

D, K

If a molecule contains two or more different hydrogen atom environments, ${ }^{1} \mathrm{H}$ NMR can also provide information about the relative the number of hydrogen atoms in each environment.

As we have seen before, methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ has two different hydrogen atom environments, labelled H_{a} and H_{b} in the diagram below.

There are $3 \mathrm{H}_{\mathrm{a}}$ atoms for every H_{b} atom. We can summarise this in table form:

Hydrogen atom environment	Relative number of hydrogen atoms
H_{a}	3
H_{b}	1

Similarly, 2-chloropropane has two different hydrogen atom environments, labelled H_{a} and H_{b} in the diagram below. There are $6 \mathrm{H}_{\mathrm{a}}$ atoms for every H_{b} atom.

Hydrogen atom environment	Relative number of hydrogen atoms
H_{a}	6
H_{b}	1

Normally the integral of the signal arising from the fewest protons is assigned an integral of 1 , and all other integrals are expressed relative to that. This can give rise to non-integer integrals.

For example, methanamine has two different hydrogen atom environments: labelled H_{a} and H_{b} in the diagram below. The ratio hydrogen atoms is therefore 3:2, or more simply 1.5:1.

Hydrogen atom environment	Relative number of hydrogen atoms
H_{a}	1.5
H_{b}	1

Use the following structures to answer the questions on this page.
A.

B.

C.

D.

E.

F.

(g) Using the identifying letters, which of the above molecules would you expect to give the following ${ }^{1} \mathrm{H}$ NMR data? Select all that apply.

Hydrogen atom environment	Relative number of hydrogen atoms
I	9
II	1

C.
(h) Using the identifying letters, which of the above molecules would you expect to give the following ${ }^{1} \mathrm{H}$ NMR data? Select all that apply.

Hydrogen atom environment	Relative number of hydrogen atoms
I	6
II	2
III	1
IV	1

B.
(i) Using the identifying letters, which of the above molecules have at least one signal in their ${ }^{1} \mathrm{H}$ NMR spectrum with a relative number of hydrogen atoms of $\mathbf{1 . 5}$? Select all that apply.

E, F.

Use the structures below to answer questions (j) to (m).
A.

B.

C.

D.

E.

F.

G.

H.

I.

J.

K.

(j) Using the identifying letters, which of the above molecules have one signal in their ${ }^{1} \mathrm{H}$ NMR spectrum with a relative number of hydrogen atoms of $\mathbf{6}$? Select all that apply.

D, I.

(k) Using the identifying letters, which of the above molecules would you expect to give the following ${ }^{1} \mathrm{H}$ NMR data? Select all that apply.

Hydrogen atom environment	Relative number of hydrogen atoms
I	2
II	1
III	1

G.
(l) Using the identifying letters, which of the above molecules would you expect to give the following ${ }^{1} \mathrm{H}$ NMR data? Select all that apply.

Hydrogen atom environment	Relative number of hydrogen atoms
I	3
II	3
III	1
IV	1

A.
(m) Using the identifying letters, which of the above molecules would you expect to give the following ${ }^{1} \mathrm{H}$ NMR data? Select all that apply.

Hydrogen atom environment	Relative number of hydrogen atoms
I	3
II	3
III	2

B, E, J.

Another useful aspect of ${ }^{1} \mathrm{H}$ NMR data is called chemical shift, a number usually between 0 and 12. Hydrogen atoms in specific chemical environments have characteristic chemical shifts, for example:

Hydrogen atom environment	Typical chemical shift range
$\mathrm{C}-\mathrm{CH}_{\boldsymbol{x}}$	$0.9-1.8$
$\mathrm{O}=\mathrm{C}-\mathrm{CH}_{\boldsymbol{x}}$	$2.0-2.7$
$\mathrm{O}-\mathrm{C} \mathbf{H}_{\boldsymbol{x}}$	$3.0-5.0$
-COOH	$10.5-12.0$

(where x is $0,1,2$ or 3)
For example:

Hydrogen atom environment	Chemical shift
H_{a}	2.1
H_{b}	11.4

- The H_{a} atoms in the molecule above are adjacent to a $\mathrm{C}=\mathrm{O}$, so their chemical shift is between 2.0-2.7.
- The H_{b} atom is part of a -COOH group, so its chemical shift is between $10.5-12.0$.

Similarly:

Hydrogen atom environment	Chemical shift
H_{a}	1.4
H_{b}	3.5
H_{c}	3.3

- The H_{a} atoms in the molecule above are part of a $\mathrm{C}-\mathrm{CH}_{3}$ group, so their chemical shift is between $0.9-1.8$.
- The H_{b} and H_{c} atoms are part of $\mathrm{O}-\mathrm{CH}_{2}$ and $\mathrm{O}-\mathrm{CH}_{3}$ groups respectively, so their chemical shifts are between $3.0-5.0$.
(n) Predict the chemical shift of each different hydrogen atom in the following molecule.

Hydrogen atom environment	Chemical shift
H_{a}	$0.9-1.8$
H_{b}	$2.0-2.7$
H_{c}	$2.0-2.7$

Use the structures below to answer questions (o) to (r).
A.

B.

C.

D.

E.

F.

G.

H.

(o) Using the identifying letters, which of the above molecules would you expect to give the following ${ }^{1} \mathrm{H}$ NMR data?

Hydrogen atom environment	Relative number of hydrogen atoms	Chemical shift
I	9	1.2
II	1	11.5

F
(p) Using the identifying letters, which of the above molecules would you expect to give the following ${ }^{1} \mathrm{H}$ NMR data?

Hydrogen atom environment	Relative number of hydrogen atoms	Chemical shift
I	6	1.2
II	1	2.6
III	3	3.7

H
(q) Using the identifying letters, which of the above molecules would you expect to give the following ${ }^{1} \mathrm{H}$ NMR data? Select all that apply.

Hydrogen atom environment	Relative number of hydrogen atoms	Chemical shift
I	3	1.0
II	2	1.7
III	3	2.5
IV	2	4.0

B
(r) Using the identifying letters, which of the above molecules would you expect to give the following ${ }^{1} \mathrm{H}$ NMR data? Select all that apply.

Hydrogen atom environment	Relative number of hydrogen atoms	Chemical shift
I	3	2.2
II	2	2.7
III	3	3.3
IV	2	3.6

D

Question 18

Let us consider the simplest types of reaction, those that happen in one step. We call these reactions elementary. For elementary reactions, the reaction rate (denoted by v) is dependent on the concentrations of each of the reactants.

For example, the elementary reaction $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}$ has the rate law $v=k[\mathrm{~A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}$, where k is a constant called the rate constant.

Consider the reaction between carbon monoxide and nitrogen trioxide:
$\mathrm{CO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})$
(a) What is the rate law for this reaction?
(i) $v=k\left[\mathrm{CO}_{2}\right]\left[\mathrm{NO}_{2}\right]$
(ii) $v=k\left[\mathrm{NO}_{2}\right]$
(iii) $v=k\left[\mathrm{NO}_{3}\right]$
(iv) $v=k\left[\mathrm{CO}_{2}\right]$
(v) $v=k[\mathrm{CO}]\left[\mathrm{NO}_{3}\right]$
(vi) $v=k[\mathrm{CO}]$

The exponents of the concentration terms in the rate law are known as the partial orders of the reaction. In the rate law $v=k[\mathrm{~A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}$, reactant A has an order of a and reactant B has an order of b.

The overall reaction order is the sum of each reactant's order. In the above example, the overall reaction order is $\mathrm{a}+\mathrm{b}$.
(b) For the elementary reaction $\mathrm{CO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})$, identify the following:
(i) Partial reaction order of CO. 1
(ii) Partial reaction order of $\mathrm{NO}_{3} .1$
(iii) Overall reaction order. 2
(c) For the elementary reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, identify the following:
(i) Partial reaction order of NO. 2
(ii) Partial reaction order of $\mathrm{O}_{2} .1$
(iii) Overall reaction order. 3
(d) For the elementary reaction $\mathrm{CO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})$: calculate the rate constant, k, if the reaction rate is $0.00491 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ when the [CO] is $0.137 \mathrm{~mol} \mathrm{~L}^{-1}$ and $\left[\mathrm{NO}_{3}\right]$ is $0.229 \mathrm{~mol} \mathrm{~L}^{-1}$. Express your answer in $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$.
$k=0.00491 /(0.137 \times 0.229)=0.157 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
(e) Which of the following can increase the rate of a chemical reaction?
(i) Increasing the surface area of a solid reactant.
(ii) Decreasing the temperature.
(iii) Using a catalyst.
(iv) For a gaseous reaction, decreasing the volume of a closed reaction vessel.
(v) For an aqueous reaction, increasing the concentration of products.

The activation energy for a chemical reaction, E_{A}, represents the minimum energy that must be provided to the reactants for a chemical reaction to occur. Collision theory states that for a successful reaction to occur, reactant molecules must collide in the correct orientation and with energy that exceeds the activation energy.

The following energy profile diagram shows two possible products, B and C, that can be produced from reactant A .

(f) What is the major product when the reaction is allowed to run for 30 seconds at a low temperature?

C
(g) What is the major product when the reaction is allowed to run for 48 hours at a high temperature?

B

Collision theory states that for a successful reaction to occur, reactant molecules must collide in the correct orientation and with energy that exceeds the activation energy. The rate of reaction is proportional to the frequency of successful collisions. This can be represented by the following formula. The rate constant, k, is proportional to the reaction rate.

$$
k=A e^{-\frac{E_{A}}{R T}}
$$

$E_{A}=\operatorname{activation}$ energy (J), $R=$ Universal Gas Constant, $T=$ temperature (K), $k=$ rate constant.
A is the pre-exponential factor, and is given by the formula:

$$
A=P \times N_{A} \times \sigma \times v
$$

$$
N_{A}=\text { Avogadro's constant; the other terms will be explained below. }
$$

Consider the following reaction: $\mathrm{CH}_{3}{ }^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{Br}$.
For this reaction to occur, a $\mathrm{CH}_{3}{ }^{+}$ion, with radius r_{C}, must come into contact with a Br^{-}ion, with radius r_{B}.

The σ term represents the area in which the two ions are close enough to collide, and can be calculated as the area of the dotted circle shown below.

(h) Select the correct expression for σ for this reaction (the area of a circle is πr^{2}).
(i) $\pi\left(r_{\mathrm{C}}-r_{\mathrm{B}}\right)^{2}$
(ii) $2 \pi \mathrm{rc}^{2}$
(iii) $\pi r_{C^{2}}-\pi r_{B}{ }^{2}$
(iv) $\pi r_{B}{ }^{2}+\pi r_{C}{ }^{2}$
(v) $\pi\left(\mathrm{r}_{\mathrm{B}}+\mathrm{r}_{\mathrm{C}}\right)^{2}$
(i) Select the molecular geometry of $\mathrm{CH}_{3}{ }^{+}$.
(i) tetrahedral
(ii) linear
(iii) trigonal planar
(iv) trigonal pyramidal
(v) T-shaped
(j) Using the fact that the radii of $\mathrm{CH}_{3}{ }^{+}$and Br^{-}are 140 pm and 195 pm respectively, calculate σ for the reaction, in m^{2}.

$$
\begin{aligned}
& \sigma=\pi \times\left(195 \times 10^{-12}+140 \times 10^{-12}\right)^{2} \\
& =3.5256 \ldots \times 10^{-19} \\
& =3.53 \times 10^{-19} \mathrm{~m}^{2}
\end{aligned}
$$

The v term represents the velocity (in $m s^{-1}$) of the particles as they collide, and is given by:

$$
v=\sqrt{\frac{8 k_{B} T}{\pi \mu}}
$$

In this formula, μ is the reduced mass, in kg, given by:

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

where m_{1} and m_{2} are the masses of the colliding ions.
(k) Calculate the mass (in kg) of a Br^{-}ion.

$$
\begin{aligned}
m_{B r^{-}} & =\frac{79.90 \mathrm{~g}}{1 \mathrm{~mol}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \times \frac{1 \mathrm{~mol}}{6.022 \times 10^{23}} \\
& =1.326 \ldots \times 10^{-25} \mathrm{~kg}
\end{aligned}
$$

(l) Calculate the mass (in kg) of a $\mathrm{CH}_{3}{ }^{+}$ion.

$$
\begin{aligned}
m_{C H_{3}^{+}} & =\frac{15.034 \mathrm{~g}}{1 \mathrm{~mol}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \times \frac{1 \mathrm{~mol}}{6.022 \times 10^{23}} \\
& =2.4965 \ldots \times 10^{-26} \mathrm{~kg}
\end{aligned}
$$

(m) Calculate the reduced mass (μ) for this reaction.

$$
\begin{aligned}
\mu & =\frac{m_{1} m_{2}}{m_{1}+m_{2}} \\
\mu & =2.10115 \ldots \times 10^{-26} \mathrm{~kg} \\
& =2.10 \times 10^{-26} \mathrm{~kg}(3 \mathrm{sf})
\end{aligned}
$$

(n) Calculate v at 298 K for the above reaction, given that $\mathrm{k}_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$.

$$
\begin{aligned}
v & =\sqrt{\frac{8 \times 1.381 \times 10^{-23} \times 298}{\pi \times 2.10115 \ldots \times 10^{-26}}} \\
& =706.229 \ldots \mathrm{~ms}^{-1} \\
& =706 \mathrm{~ms}^{-1}(3 \mathrm{sf})
\end{aligned}
$$

Recall the following formulae:

$$
k=A e^{-\frac{E_{A}}{R T}}
$$

$E_{A}=$ activation energy (J), $R=$ Universal Gas Constant, $T=$ temperature (K), $k=$ rate constant.
A is the pre-exponential factor, and is given by the formula:

$$
A=P \times N_{A} \times \sigma \times v
$$

(o) Given that $\rho=0.9$ and $\mathrm{E}_{\mathrm{A}}=-123 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculate the value of k for this reaction at 298 K.

$$
\begin{aligned}
k & =0.9 \times 6.022 \times 10^{23} \times 3.5256 \ldots \times 10^{-19} \times 706.229 \ldots \times e^{\frac{123000}{8.314 \times 298}} \\
& =4.9077 \ldots \times 10^{29} \\
& =4.91 \times 10^{29}(3 s f)
\end{aligned}
$$

Reaction rates of enzymes can be described by the Michaelis-Menten equation:

$$
v=\frac{V_{\max }[\mathrm{S}]}{K_{\mathrm{m}}+[\mathrm{S}]}
$$

- v_{-}is the rate of reaction
- $V_{\max }$ is the maximum reaction rate
- [S] is the concentration of the enzyme's substrate (reactant)
- K_{m} is a constant

For the following changes, select the effect (if any) on the rate of reaction.
(p) What effect does increasing the concentration of substrate from below K_{m} to above K_{m} have on the reaction rate?

Increases reaction rate.
(q) What effect does using a different enzyme with a smaller K_{m} value have on the reaction rate?

Increases reaction rate.

The Michaelis-Menten equation can be re-written as follows:

$$
\frac{1}{v}=\frac{K_{\mathrm{m}}}{V_{\max }} \cdot \frac{1}{[S]}+\frac{1}{V_{\max }}
$$

A plot of $1 / v_{\text {_ }}$ against $1 /[\mathrm{S}]$ for a certain enzyme is shown below:

(r) What is the value of $V_{\max }$ for this enzyme?
$V_{\max }=1 / 0.3571=2.800 \mathrm{mM} \mathrm{s}^{-1}$
(s) What is the value of K_{m} for this enzyme?
$K_{\mathrm{m}}=2.0714 \times 2.800=5.8 \mathrm{mM}$
(t) At what [S] is the reaction rate equal to half $V_{\max }$?

When $v=$ half $V_{\text {max }},[\mathrm{S}]=K_{\mathrm{m}}=5.8 \mathrm{mM}$

END OF EXAM

