Section A (Multiple Choice)

Question \#	Answer	Question \#	Answer	Question \#	Answer
Q1	C	Q6	E	Q11	A
Q2	D	Q7	B	Q12	A
Q3	C	Q8	D	Q13	A
Q4	D	Q9	B	Q14	A
Q5	E	Q10	C	Q15	E

Question 16

a) and b)

trans

cis
c)
(i) $\mathrm{O}=$ nucleophilic
(ii) $\mathrm{N}=$ nucleophilic
(iii) $\mathrm{C}=$ neither
(iv) $\mathrm{C}=$ electrophilic, $\mathrm{I}=$ nucleophilic
d) (i) $\mathrm{Br}^{+} \mathrm{Br}^{-}$
(ii)

(iii)

e) (i) bottom
(ii) bottom
(iii) both equal
f)
(i)

(ii)

g)
(i)

(ii)

h) (i)

(ii)

2008 National Qualifying Exam - Chemistry

i) mechanism 3

Question 17

Chemistry NQE 2008 Q17
a)
i) Manganese, + VII, MnO_{4}^{-}
ii) Carbon, -III, $\mathrm{CH}_{3} \mathrm{COOH}$,
b)
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \quad$ [oxidation]
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
c)
$5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+4 \mathrm{MnO}_{4}^{-}+12 \mathrm{H}^{+} \rightarrow 5 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{Mn}^{2+}+11 \mathrm{H}_{2} \mathrm{O}$
d)
$\mathrm{n}\left(\mathrm{MnO}_{4}^{-}\right)=0.05 \times 0.0144=7.20 \times 10^{-4} \mathrm{M}$
$\mathrm{n}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)=5 / 4 \times 7.20 \times 10^{-4}=9.00 \times 10^{-4} \mathrm{M}$
$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]$ in diluted white wine $=9.00 \times 10^{-4} \mathrm{M} / 0.02=4.50 \times 10^{-2} \mathrm{M}$

2008 National Qualifying Exam - Chemistry Solutions

e)
$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]$ in white wine $=4.50 \times 10^{-2} \mathrm{M} \times 500 / 10=2.25 \mathrm{M}$
1 L of wine has $2.25 \times \mathrm{M}_{\mathrm{w}}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)=2.25 \times 46.07=103.7 \mathrm{~g}$
$\mathrm{v}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)=103.7 / .79=131.2 \mathrm{~mL}$
$\% \mathrm{v} / \mathrm{v}=13.1 \%$
f)

If 1.2 g of acetic acid in $1 \mathrm{~L}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=1.2 / 60.05=1.998 \times 10^{-2} \mathrm{M}$
20.00 mL diluted to $100.00 \mathrm{~mL}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=3.997 \times 10^{-3} \mathrm{M}$
$\mathrm{n}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ in $10.00 \mathrm{~mL}=3.997 \times 10^{-5} \mathrm{M}$
If approx. 20.00 mL titre of $\mathrm{NaOH},[\mathrm{NaOH}]=3.997 \times 10^{-5} / 0.02=1.998 \times 10^{-3} \mathrm{M}$
Most appropriate solution is $2.00 \times 10^{-3} \mathrm{M}$

g)

All ethanol in wine now converted to acetic acid
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ in distillate $=\left(2.25+1.998 \times 10^{-2}\right) / 5=0.45299 \mathrm{M}$
A higher concentration of acetic acid requires a higher concentration of NaOH .
Use strongest NaOH available.
h)

No, even if the interference of the additional acetic acid produced from the reaction with $\mathrm{MnO}_{4}{ }^{-}$was taken into account, the proportion of the original acetic acid is very small and with this method its determination would be inaccurate.

Question 18

(a) From Figure 2, $\varepsilon_{\text {Try }}=5.6 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ and $\varepsilon_{\mathrm{Tyr}}=1.4 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$
(b) $\varepsilon_{\text {glucagon }}=\left(2 \times 1.4 \times 10^{3}+1 \times 5.6 \times 10^{3}\right)=\mathbf{8 . 4} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{M}^{\mathbf{- 1}} \mathbf{c m}^{\mathbf{- 1}}$
(c) $\mathrm{c}=\frac{\mathrm{A}}{\mathrm{c} \times \ell}=\frac{0.95}{8.4 \times 10^{3} \times 1}=1.13 \times 10^{4} \mathrm{~mol} \mathrm{~L}^{-1}\left(\mathbf{1 . 1} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{~ m o l ~ L}^{-\mathbf{1}}\right.$ to 2 SF$)$
(d) $1.13 \times 10^{4} \mathrm{~mol} \mathrm{~L}^{-1} \times 3485 \mathrm{~g} \mathrm{~mol}^{-1}=\mathbf{0 . 3 9} \mathbf{g ~ L}^{\mathbf{- 1}}$
(e)
(i) $\quad 1.0 \mathrm{~g} \mathrm{~L}^{-1}$ glucagon $=\frac{1.0}{3485}=2.87 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
$A=\varepsilon \times c \times \ell=8.4 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1} \times 2.87 \times 10^{-4} \mathrm{M} \times 1.0 \mathrm{~cm}=2.41$ (2.4 to 2 SF)
(ii)

Amino acid frequency in glucagon is: $\frac{2}{29} \times 100=6.90 \%$ tyrosine and $\frac{1}{29} \times 100=$ 3.45% tryptophan.
$\varepsilon(100$ amino acids in glucagon $)=\left(6.90 \times 1.4 \times 10^{3}+3.45 \times 5.6 \times 10^{3}\right)=2.9 \times$ $10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$
$\varepsilon(100$ amino acids in average polypeptide $)=\left(3.4 \times 1.4 \times 10^{3}+1.3 \times 5.6 \times\right.$ 10^{3})
$1.2 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$
$\mathrm{A}\left(1.0 \mathrm{~g} \mathrm{~L}^{-1}\right.$ average polypeptide $)=$
$\mathrm{A}\left(1.0 \mathrm{~g} \mathrm{~L}^{-1}\right.$ glucagon $) \times \frac{\varepsilon(100 \text { amino acids in average polypeptide })}{\varepsilon(100 \text { amino acids in glucagon })}=$
$2.41 \times \frac{1.24 \times 10^{4}}{2.90 \times 10^{4}}=\mathbf{1 . 0}$
(f) $\quad \varepsilon($ unknown protein $)=\left(3 \times 1.4 \times 10^{3}+6 \times 5.6 \times 10^{3}\right)=3.78 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$
$\mathrm{A}\left(0.24 \mathrm{~g} \mathrm{~L}^{-1}\right.$ glucagon $)=0.24 \times 2.41=0.578$
$A($ unknown protein $)=1.85-0.578=1.27$
$c($ unknown protein $)=\frac{1.27}{3.78 \times 10^{4} \times 1}=\mathbf{3 . 4} \times \mathbf{1 0}^{\mathbf{- 5}} \mathbf{~ m o l ~ L}^{\mathbf{- 1}}$

2008 National Qualifying Exam - Chemistry Solutions

Question 19

a) (1 mark)

Non-metal
b) (2 marks)

$$
\begin{aligned}
& \mathrm{n}(\mathrm{NaOH}) \quad=\mathrm{cV} \\
&=1.00 \mathrm{M} \times 0.018 \mathrm{~L} \\
&=0.018 \mathrm{~mol} \\
&=\mathrm{m} / \mathrm{n} \\
& \mathrm{M}_{\mathrm{w}}=0.02 / 0.018 \\
&=16.1(\times 2=32.2 \rightarrow \mathrm{~S}) \\
&=\text { Sulfur }
\end{aligned}
$$

c)

A (2 marks)	
S or	S_{8}
B (2 marks)	
SO_{2}	$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
C (2 marks)	
SO_{3}	$2-\mathrm{SO}_{2} \rightarrow 2 \mathrm{SO}_{2}$
D (2 marks)	
$\mathrm{H}_{2} \mathrm{SO}_{3}$	$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
E (2 marks)	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
F (3 marks)	
$\mathrm{S}_{2} \mathrm{Cl}_{2}$	$2 \mathrm{~S}+\mathrm{Cl}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{Cl}_{2}$

d)

e) (2 marks each)

B	C	F	F
Bent	Trigonal planar	Open book shaped	Pyramidal

2008 National Qualifying Exam - Chemistry Solutions

