2006 National Qualifying Exam - Chemistry

 SolutionsSection A (Multiple Choice)

Question \#	Answer	Question \#	Answer	Question \#	Answer
Q1	B	Q6	B	Q11	C
Q2	D	Q7	C	Q12	C
Q3	D	Q8	B	Q13	A
Q4	C	Q9	D	Q14	A
Q5	E	Q10	E	Q15	E

Question 16

(a) [2 marks]
$\mathrm{Mg}>\mathrm{Zn}>\mathrm{Pb}>\mathrm{Cu}$
(b) [1 mark]
\square
(c) [3 marks]

Reduction half equation

$$
\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}
$$

Oxidation half equation

$$
\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}
$$

\square
(d) [1 mark]

(e) [4 marks]

Fe in $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(hint: CN has a charge of -1)

Fe in $\mathrm{K}_{2} \mathrm{M}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$

S in $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

S in $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$

+3
+2
+2
$+2 \frac{1}{2}$

(f) [6 marks]

Reduction half equation

$$
\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-} \quad \times 2
$$

Oxidation
half equation

$$
3 \mathrm{I}^{-} \rightarrow \mathrm{I}_{3}^{-}+2 \mathrm{e}^{-}
$$

Full equation

$$
2 \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}+3 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}+\mathrm{I}_{3}^{-}
$$

(g) [2 marks]

$$
2 \mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}+2 \mathrm{~K}^{+}+3 \mathrm{X}^{2+} \rightarrow \mathrm{K}_{2} \mathrm{X}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}
$$

(h) [1 mark]
$1 \times 2 / 3 \times 1 / 2=2 / 6=1 / 3$
(i) [4 marks]

Reduction half equation
$\mathrm{I}_{3}{ }^{-}+2 \mathrm{e}^{-} \rightarrow 31^{-}$

Oxidation
half equation
$2 \mathrm{~S}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{e}^{-}$

Full equation
$\mathrm{I}_{3}{ }^{-}+2 \mathrm{~S}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 3 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
(j) [1 mark]
$1 / 3$ (from part iv) $\times 2 / 1=2 / 3$
(k) [2 marks]

$$
\begin{aligned}
\mathrm{n}\left(\mathrm{~S}_{2} \mathrm{O}_{4}{ }^{2-}\right) & =\mathrm{c}\left(\mathrm{~S}_{2} \mathrm{O}_{4}{ }^{2-}\right) \times \mathrm{v}\left(\mathrm{~S}_{2} \mathrm{O}_{4}{ }^{2-}\right) \\
& =.0231 \times .100 \\
& =2.31 \times 10^{-3} \mathrm{~mol} \\
\mathrm{n}\left(\mathrm{X}^{2+}\right) & =3 / 2 \times \mathrm{n}\left(\mathrm{~S}_{2} \mathrm{O}_{4}{ }^{2-}\right) \\
& =3 / 2 \times 2.31 \times 10^{-3} \mathrm{~mol} \\
& =3.465 \times 10^{-3} \mathrm{~mol} \\
{\left[\mathrm{X}\left(\mathrm{NO}_{3}\right)_{2}\right] } & =\left[\mathrm{X}^{2+}\right]=\mathrm{n}\left(\mathrm{X}^{2+}\right) / \mathrm{v}\left(\mathrm{X}^{2+}\right) \\
& =3.465 \times 10^{-3} / 0.0250 \\
& =1.386 \times 10^{-2} \\
& =1.39 \times 10^{-2} \mathrm{M}
\end{aligned}
$$

(I) [3 marks]

$$
\begin{aligned}
{\left[\mathrm{X}\left(\mathrm{NO}_{3}\right)_{2}\right]_{\text {true }} } & =\left[\mathrm{X}\left(\mathrm{NO}_{3}\right)_{2}\right]_{\text {false }} \times 100 / 99.3 \times 100 / 99.4 \\
& =1.386 \times 10^{-2} \times 100 / 99.3 \times 100 / 99.4 \\
& =1.40 \times 10^{-2} \mathrm{M}
\end{aligned}
$$

Question 17 [2 marks]
(a) [3 marks]

(a) 4	4	4
(b) 4	4	5

(b) [3 marks]
(I)
(c) [3 marks]

${ }^{(1)} \mathrm{H}$ NMR: 3	${ }^{(I I)}$ (III)	
${ }^{1} \mathrm{H}$ NMR: 4	${ }^{1} \mathrm{H}$ NMR: 1	
${ }^{13} \mathrm{C}$ NMR: 3	${ }^{13} \mathrm{C}$ NMR: 4	${ }^{13} \mathrm{C}$ NMR: 2

(d) [2 marks]

$$
\begin{aligned}
& \mathrm{C}: \mathrm{H}=\frac{83.6}{12.01}: \frac{16.4}{1.008} \\
&=6.96: 16.27 \\
&=1: 2.33 \\
&=3: 7 \\
& \rightarrow \mathrm{C}_{3} \mathrm{H}_{7}
\end{aligned}
$$

(e) [1 marks]

> Mass of $\mathrm{C}_{3} \mathrm{H}_{7}=43.1 \mathrm{~g}$
> $\rightarrow 2$ units required for molecule
> $\rightarrow \mathrm{C}_{6} \mathrm{H}_{14}$
(f) [2 marks]

(g) [2 marks]

meta	para
${ }^{1} \mathrm{H}$ NMR: 5	${ }^{1} \mathrm{H}$ NMR: 3
${ }^{13} \mathrm{C}$ NMR: 7	${ }^{13} \mathrm{C}$ NMR: 5

(h) [2 marks]

(i) [1 marks]

(j) [1.5 marks]

E	Z	Z

(k) [4.5 marks]

(I) [3 marks]

Question 18

(a) [3 marks]

:N三N:		

(b) $/ 1$ mark

$$
\mathrm{N}_{2}<\mathrm{N}_{2} \mathrm{~F}_{2}<\mathrm{N}_{2} \mathrm{~F}_{4}
$$

(c) /1 mark

$$
\mathrm{N}_{2} \mathrm{~F}_{4}<\mathrm{N}_{2} \mathrm{~F}_{2}<\mathrm{N}_{2}
$$

(d) [2 marks]

$$
\begin{aligned}
& 151 \mathrm{~kJ} \mathrm{~mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}=2.50_{7} \times 10^{-19} \mathrm{~J} \\
& 2.50_{7} \times 10^{-19} \mathrm{~J} / 1.602 \times 10^{-19} \mathrm{~J} \mathrm{eV}^{-1}=1.56 \mathrm{eV}
\end{aligned}
$$

(e) [1 mark]

It will oscillate between 99 and 433 pm.

(f) [2 marks]

A bond length of 0 is impossible because of the Coulombic repulsion between the nuclei, so the bond energy should go to infinity as the bond length approaches zero.
(g) [2 marks]

A bond length of infinity corresponds to two non-bonded atoms, so the bond energy should approach a constant as the bond length goes to zero, reflecting the fact that there is less and less interaction between the atoms at this distance.

(h) [3 marks]

Oops - the intention here was to have 1 mark for each of the features in (c), (e) and (f). Unfortunately the scale is completely wrong for drawing a bond with a dissociation energy of 1.57 eV ! Sorry. Under the circumstances 1.5 marks were given to each for the features in (f) and (g), and ignore the dissociation energy entirely.
(i) [4 marks]
Nocos Nocos

(j) [2 marks]

TiF_{2} is bent. Since it absorbs the same frequencies in its IR and Raman spectra, it cannot have a COS.
(k) [2 marks]
XeF_{4} doesn't have any peaks common to both spectra. While this could just be a coincidence, it's more likely (and in fact true) that these are prohibited by the rule of mutual exclusion, which means that it must have a COS and therefore be square planar.
(I) [3 marks]

(m) [2 marks]

Again, there are no peaks common to both spectra. While this could just be a coincidence, with so many peaks it's most likely that these are prohibited by the rule of mutual exclusion, which means that it must have a COS. The only isomer of the ones above which has a COS is the trans isomer.
(n) [2 marks]

By the rule of mutual exclusion, $\mathrm{N}_{2} \mathrm{O}$ can't have a COS. Since we know it's linear, the atoms must be bonded in the order NNO.

Question 19

(a) [2 marks]

A large value of K_{c} indicates that the solute favours the stationary phase and moves slowly through the column.
(b) [2 marks]

$$
\begin{aligned}
& \text { Mobile phase: }[A]=10 / 2 \times 10^{6} \mathrm{~nm}^{3}=5 \times 10^{-6} \text { molecules } / \mathrm{nm}^{3} \\
& \left.[B]=2 / 2 \times 10^{6} \mathrm{~nm}^{3}=1 \times 10^{-6} \text { molecules } / \mathrm{nm}^{3}\right\} 0.5 \text { marks } \\
& \text { Stationary phase: } \quad[A]=10 / 5 \times 10^{4} \mathrm{~nm}^{3}=2 \times 10^{-4} \text { molecules } / \mathrm{nm}^{3} \\
& {[B]=7 / 5 \times 10^{4} \mathrm{~nm}^{3}=1.4 \times 10^{-4} \text { molecules } / \mathrm{nm}^{3} \quad 0.5 \text { marks }} \\
& \mathrm{K}_{\mathrm{c}}(\mathrm{~A})=[\mathrm{A}]_{\mathrm{S}} /[\mathrm{A}]_{\mathrm{M}}=2 \times 10^{-4} / 5 \times 10^{-6}=40 \quad 0.5 \text { marks } \\
& \mathrm{K}_{\mathrm{c}}(\mathrm{~B})=[\mathrm{B}]_{\mathrm{S}} /[\mathrm{B}]_{M}=1.4 \times 10^{-4} / 1 \times 10^{-6}=140 \quad 0.5 \text { marks }
\end{aligned}
$$

(c) [2 marks]

The solute emerges from the column at a time very close to the dead time $\left(\mathrm{t}_{\mathrm{M}}\right)$.
(d) [2 marks]

$$
R_{s}=\frac{2(17.63-16.40)}{(1.11+1.21)}=1.06
$$

(e) [4 marks]

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{A}}=16\left(\frac{16.40}{1.11}\right)^{2}=3493 ; \quad \mathrm{N}_{\mathrm{B}}=16\left(\frac{17.63}{1.21}\right)^{2}=3397 \\
& \mathrm{~N}_{\mathrm{A}}=\frac{3493+3397}{2}=3445
\end{aligned}
$$

(f) [2 marks]

$$
\mathrm{H}=\mathrm{I} / \mathrm{N}=30.0 \mathrm{~cm} / 3445=8.71 \times 10^{\mathbf{- 3}} \mathbf{~ c m}
$$

(g) [6 marks]

$$
\begin{aligned}
& \frac{\left(\mathrm{R}_{\mathrm{s}}\right)_{1}}{\left(\mathrm{R}_{\mathrm{s}}\right)_{2}}=\frac{\sqrt{\mathrm{N}_{1}}}{\sqrt{\mathrm{~N}_{2}}} \\
& \frac{1.06}{1.5}=\frac{\sqrt{3445}}{\sqrt{\mathrm{~N}_{2}}} \\
& \mathrm{~N}_{2}=3445\left(\frac{1.5}{1.06}\right)^{2}=6.9 \times 10^{3} \\
& \mathrm{~L}=\mathrm{N} \times \mathrm{H}=6.9 \times 10^{3} \times 8.7 \times 10^{-3}=60 \mathrm{~cm} \\
& \text { (h) }[2 \text { marks }]
\end{aligned}
$$

So that the ODS group is not "stripped" from the silica support as a result of the high pressures developed during HPLC.
(i) [2 marks]

Eluted first	Eluted last	
Butan-1-ol	diethyl ether	hexane
$[1$ mark for the reverse order $]$		

(j) [4 marks]

Time (hour)	Peak Area	Ibuprofen Concentration $\left(\boldsymbol{\mu g ~ m L}^{\mathbf{- 1}}\right)$
0	0	$\mathbf{0}$
0.5	91.3	$\mathbf{1 4 . 2}$
1.0	80.2	$\mathbf{1 2 . 2}$
1.5	52.1	$\mathbf{7 . 6}$
2.0	38.5	$\mathbf{5 . 6}$
3.0	24.2	$\mathbf{3 . 2}$
4.0	21.2	$\mathbf{2 . 8}$
6.0	18.5	$\mathbf{2 . 4}$
8.0	15.2	$\mathbf{2 . 0}$

(k) [2 marks]

Third half hour or between 1 and 1.5 hours.

