

# 2006 National Qualifying Exam – Chemistry Solutions

### Section A (Multiple Choice)

| Question # | Answer | Question # | Answer | Question # | Answer |
|------------|--------|------------|--------|------------|--------|
| Q1         | В      | Q6         | В      | Q11        | С      |
| Q2         | D      | Q7         | С      | Q12        | С      |
| Q3         | D      | Q8         | В      | Q13        | A      |
| Q4         | С      | Q9         | D      | Q14        | A      |
| Q5         | E      | Q10        | E      | Q15        | E      |

### Question 16



#### (e) **[4 marks]**

| Fe in $K_3[Fe(CN)_6]$<br>(hint: CN has a charge of –1)                  | +3  |
|-------------------------------------------------------------------------|-----|
| Fe in K <sub>2</sub> M <sub>3</sub> [Fe(CN) <sub>6</sub> ] <sub>2</sub> | +2  |
| S in $K_2S_2O_3$                                                        | +2  |
| S in S <sub>4</sub> O <sub>6</sub> <sup>2-</sup>                        | +2½ |

(f) **[6 marks]** 

| Reduction<br>half equation | $Fe(CN)_6^{3-} + e^- \rightarrow Fe(CN)_6^{4-}$ | x 2 |
|----------------------------|-------------------------------------------------|-----|
|                            |                                                 |     |
|                            |                                                 |     |

Oxidation half equation  $3l^2 \rightarrow l_3^2 + 2e^2$ 

Full equation

 $2\text{Fe}(\text{CN})_6^{3-} + 3\text{I}^- \rightarrow 2\text{Fe}(\text{CN})_6^{4-} + \text{I}_3^{-}$ 

(g) [2 marks]

 $2\mathsf{Fe}(\mathsf{CN})_6^{4\cdot} + 2\mathsf{K}^+ + 3\mathsf{X}^{2+} \xrightarrow{} \mathsf{K}_2\mathsf{X}_3[\mathsf{Fe}(\mathsf{CN})_6]_2$ 

(h) **[1 mark]** 

1 x 2/3 x 1/2 = 2/6 = 1/3

(i) **[4 marks]** 

| Reduction<br>half equation | $I_3^- + 2e^- \rightarrow 3I^-$                       |
|----------------------------|-------------------------------------------------------|
| Oxidation<br>half equation | $2S_2O_4^{2-} \rightarrow S_4O_6^{2-} + 2e^{-}$       |
| Full equation              | $I_3^- + 2S_2O_4^{2-} \rightarrow 3I^- + S_4O_6^{2-}$ |
| [1 mark]                   |                                                       |

1/3 (from part iv) x 2/1 = 2/3

(k) [2 marks]

(j)

```
\begin{split} n(S_2O_4^{\ 2^-}) &= c(S_2O_4^{\ 2^-}) \times v(S_2O_4^{\ 2^-}) \\ &= .0231 \times .100 \\ &= 2.31 \times 10^3 \text{ mol} \\ n(X^{2+}) &= 3/2 \times n(S_2O_4^{\ 2^-}) \\ &= 3/2 \times 2.31 \times 10^{-3} \text{ mol} \\ &= 3.465 \times 10^{-3} \text{ mol} \\ [ X(NO_3)_2 ] &= [ X^{2+} ] = n(X^{2+})/v(X^{2+}) \\ &= 3.465 \times 10^{-3}/ 0.0250 \\ &= 1.386 \times 10^{-2} \\ &= 1.39 \times 10^{-2} \text{ M} \end{split}
```

(I) [3 marks]

 $[X(NO_3)_2]_{true} = [X(NO_3)_2]_{false} \times 100/99.3 \times 100/99.4$ = 1.386 x 10<sup>-2</sup> x 100/99.3 x 100/99.4 = 1.40 x 10<sup>-2</sup> M

#### Question 17 [2 marks] ${}^{12}_{6}C {}^{14}_{6}C {}^{14}_{7}N {}^{15}_{8}O {}^{16}_{8}O$ ${}^{19}_{9}F$ ${}^{31}_{15}P$ $^{195}_{78}Pt$ [3 marks] (a) (a) 4 4 4 4 5 (b) 4 [3 marks] (b) (II) (I) (III) H₃Ć. CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> H<sub>3</sub>C CH<sub>3</sub> H<sub>3</sub>C CH<sub>3</sub> H<sub>3</sub>C [3 marks] (C) (III) (II) (I) <sup>1</sup>H NMR: 3 <sup>1</sup>H NMR: 4 <sup>1</sup>H NMR: 1 <sup>13</sup>C NMR: 3 <sup>13</sup>C NMR: 4 <sup>13</sup>C NMR: 2 [2 marks] (d) 83.6 16.4 C:H = 12.01 1.008 = 6.96 : 16.27 = 1 : 2.33= 3 : 7 $\rightarrow C_3H_7$ [1 marks] (e) Mass of $C_{3}H_{7} = 43.1 \text{ g}$ $\rightarrow$ 2 units required for molecule $\rightarrow C_6H_{14}$ [2 marks] (f) H<sub>3</sub>C $CH_3$ с́н₃ H<sub>3</sub>C

(g) [2 marks]

| <i>meta</i>            | <i>para</i>            |
|------------------------|------------------------|
| <sup>1</sup> H NMR: 5  | <sup>1</sup> H NMR: 3  |
| <sup>13</sup> C NMR: 7 | <sup>13</sup> C NMR: 5 |



## Question 18

(a) [3 marks]

| AA AA AA | :N≡N: | ;F: ;F:<br>;N-N:<br>;F: ;F: | ;F:<br>.N=N<br>;F: |  |
|----------|-------|-----------------------------|--------------------|--|
|----------|-------|-----------------------------|--------------------|--|

#### (b) **/1 mark**

| $N_2 < N_2F_2 < N_2F_4$ |  |
|-------------------------|--|
|-------------------------|--|

#### (c) /1 mark

 $N_2F_4 < N_2F_2 < N_2$ 

#### (d) [2 marks]

| 151 kJ mol <sup>-1</sup> / 6.02 × $10^{23}$ mol <sup>-1</sup> = 2.50 <sub>7</sub> × $10^{-19}$ J        |
|---------------------------------------------------------------------------------------------------------|
| 2.50 <sub>7</sub> × 10 <sup>−19</sup> J / 1.602 × 10 <sup>−19</sup> J eV <sup>−1</sup> = <b>1.56 eV</b> |

#### (e) [1 mark]

It will oscillate between 99 and 433 pm.

#### (f) [2 marks]

A bond length of 0 is impossible because of the Coulombic repulsion between the nuclei, so the bond energy should go to infinity as the bond length approaches zero.

#### (g) [2 marks]

A bond length of infinity corresponds to two non-bonded atoms, so the bond energy should approach a constant as the bond length goes to zero, reflecting the fact that there is less and less interaction between the atoms at this distance.

#### (h) [3 marks]

Oops – the intention here was to have 1 mark for each of the features in (c), (e) and (f). Unfortunately the scale is completely wrong for drawing a bond with a dissociation energy of 1.57 eV! Sorry. Under the circumstances 1.5 marks were given to each for the features in (f) and (g), and ignore the dissociation energy entirely.

#### (i) [4 marks]



#### (j) [2 marks]

 $TiF_2$  is bent. Since it absorbs the same frequencies in its IR and Raman spectra, it cannot have a COS.

#### (k) [2 marks]

XeF<sub>4</sub> doesn't have any peaks common to both spectra. While this could just be a coincidence, it's more likely (and in fact true) that these are prohibited by the rule of mutual exclusion, which means that it must have a COS and therefore be square planar.

#### (I) [3 marks]



#### (m) **[2 marks]**

Again, there are no peaks common to both spectra. While this could just be a coincidence, with so many peaks it's most likely that these are prohibited by the rule of mutual exclusion, which means that it must have a COS. The only isomer of the ones above which has a COS is the *trans* isomer.

#### (n) **[2 marks]**

By the rule of mutual exclusion, N<sub>2</sub>O *can't* have a COS. Since we know it's linear, the atoms must be bonded in the order NNO.

# Question 19

### (a) **[2 marks]**

A large value of  $K_{\rm c}$  indicates that the solute favours the stationary phase and moves slowly through the column.

#### (b) [2 marks]

| Mobile phase: [A] = $10/2 \times 10^6$ nm <sup>3</sup> = $5 \times 10^{-6}$ molecules/nm <sup>3</sup><br>[B] = $2/2 \times 10^6$ nm <sup>3</sup> = $1 \times 10^{-6}$ molecules/nm <sup>3</sup> ] 0.5 marks |                                                                                                                                            |                         |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|
| Stationary phase:                                                                                                                                                                                           | [A] = $10/5 \times 10^4$ nm <sup>3</sup> = $2 \times 10^{-4}$ molecule<br>[B] = $7/5 \times 10^4$ nm <sup>3</sup> = $1.4 \times 10^{-4}$ n | s/nm³<br>nolecules/nm͡³ | 0.5 marks |
| $K_{c}(A) = [A]_{S}/[A]_{M} = 2$                                                                                                                                                                            | $\times 10^{-4}/5 \times 10^{-6} = 40$                                                                                                     | 0.5 marks               |           |
| $K_{c}(B) = [B]_{S}/[B]_{M} = 1$                                                                                                                                                                            | $.4 \times 10^{-4}/1 \times 10^{-6} = 140$                                                                                                 | 0.5 marks               |           |

#### (c) [2 marks]

The solute emerges from the column at a time very close to the dead time  $(t_M)$ .

#### (d) [2 marks]

$$R_{s} = \frac{2(17.63 - 16.40)}{(1.11 + 1.21)} = 1.06$$

(e) [4 marks]

$$N_{A} = 16 \left(\frac{16.40}{1.11}\right)^{2} = 3493; \quad N_{B} = 16 \left(\frac{17.63}{1.21}\right)^{2} = 3397$$
$$N_{A} = \frac{3493 + 3397}{2} = 3445$$

(f) [2 marks]

$$H = L/N = 30.0 \text{ cm}/3445 = 8.71 \times 10^{-3} \text{ cm}$$

(g) [6 marks]

$$\frac{(R_{s})_{l}}{(R_{s})^{2}} = \frac{\sqrt{N_{1}}}{\sqrt{N_{2}}}$$

$$\frac{1.06}{1.5} = \frac{\sqrt{3445}}{\sqrt{N_{2}}}$$

$$N_{2} = 3445 \left(\frac{1.5}{1.06}\right)^{2} = 6.9 \times 10^{3}$$

$$L = N \times H = 6.9 \times 10^{3} \times 8.7 \times 10^{-3} = 60 \text{ cm}$$

#### (h) [2 marks]

So that the ODS group is not "stripped" from the silica support as a result of the high pressures developed during HPLC.

### (i) [2 marks]

| Eluted first                   |               | Eluted last |
|--------------------------------|---------------|-------------|
| Butan-1-ol                     | diethyl ether | hexane      |
| [1 mark for the reverse order] |               |             |

#### (j) **[4 marks]**

| Time (hour) | Peak Area | lbuprofen<br>Concentration<br>(µg mL <sup>-1</sup> ) |
|-------------|-----------|------------------------------------------------------|
| 0           | 0         | 0                                                    |
| 0.5         | 91.3      | 14.2                                                 |
| 1.0         | 80.2      | 12.2                                                 |
| 1.5         | 52.1      | 7.6                                                  |
| 2.0         | 38.5      | 5.6                                                  |
| 3.0         | 24.2      | 3.2                                                  |
| 4.0         | 21.2      | 2.8                                                  |
| 6.0         | 18.5      | 2.4                                                  |
| 8.0         | 15.2      | 2.0                                                  |

#### (k) [2 marks]

Third half hour or between 1 and 1.5 hours.