

2005 National Qualifying Exam - Chemistry Solutions

1. E
2. D
3. D
4. A
5. B
6. C
7. C
8. D
9. B
10. D
11. E
12. D
13. B
14. B
15. D

Question 16

(a) [2 marks each]
(i) $\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \quad$ oxidation
(ii) $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} \quad$ oxidation
(iii) $\mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{UO}_{2}{ }^{2+}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$oxidation
(b) [2 marks each]
(i) $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{U}+2 \mathrm{H}^{+} \rightarrow \mathrm{UO}_{2}^{2+}+3 \mathrm{H}_{2}$
(ii) $4 \mathrm{H}^{+}+{\underline{\mathrm{UO}_{2}}}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O}$
(iii) $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{U}^{2+}+2 \mathrm{Fe}^{3+} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{UO}_{2}{ }^{2+}+4 \mathrm{H}^{+}$
(iv) $\mathrm{Fe}^{2+}+\mathrm{Ce}^{4+} \rightarrow \mathrm{Ce}^{3+}+\mathrm{Fe}^{3+}$
(c)
$n\left(\mathrm{Ce}^{4+}\right)=\mathrm{c}\left(\mathrm{Ce}^{4+}\right) \mathrm{xv}\left(\mathrm{Ce}^{4+}\right)$
$=0.375 \mathrm{x} .02069$
$=0.007759$ moles [1 mark]
$\mathrm{n}\left(\mathrm{Fe}^{2+}\right)=\mathrm{n}\left(\mathrm{Ce}^{4+}\right)=0.007759$ moles
$\mathrm{n}_{1}(\mathrm{U})=1 / 2 \times n\left(\mathrm{Fe}^{2+}\right)=1 / 2 \times 0.007759=0.003879$ moles
[1 mark]
[1 mark]
$\mathrm{m}_{1}(\mathrm{U})=\mathrm{n}(\mathrm{U}) \times \mathrm{M}_{\mathrm{r}}(\mathrm{U})=0.003879 \times 238=0.92329 \mathrm{~g}$
[1 mark]
$\%(U)=92.3 \%(92.1-92.5$ acceptable $)$
[1 mark]
(d) Higher
(e)

$\mathrm{n}\left(\mathrm{Ce}^{4+}\right)=\mathrm{c}\left(\mathrm{Ce}^{4+}\right) \mathrm{xv}\left(\mathrm{Ce}^{4+}\right)$	[1 mark]
$=0.375 \times 0.01862$	
$=0.0069825$ moles	
$\mathrm{n}\left(\mathrm{Fe}^{2+}\right)=\mathrm{n}\left(\mathrm{Ce}^{4+}\right)=0.0069825$ moles	[1 mark]
$\mathrm{n}_{2}(\mathrm{U})=1 / 2 \mathrm{xn}\left(\mathrm{Fe}^{2+}\right)=1 / 2 \times .0069825=0.0034913$ moles	[1 mark]
$\mathrm{m}_{2}(\mathrm{U})=\mathrm{n}(\mathrm{U}) \times \mathrm{M}_{\mathrm{r}}(\mathrm{U})=0.0034913 \times 238=0.83092 \mathrm{~g}$	[1 mark]
\% (U) = 83.1 \% (82.9-83.3 acceptable)	[1 mark]

(f)

$\mathrm{m}(\mathrm{U})$ extra $=\mathrm{m}_{1}(\mathrm{U})-\mathrm{m}_{2}(\mathrm{U})=0.92329-0.83092=0.09237 \mathrm{~g}$	$[1 \mathrm{mark}]$
$\mathrm{n}(\mathrm{U})$ extra $=\mathrm{m}(\mathrm{U})$ extra $/ \mathrm{M}_{\mathrm{r}}(\mathrm{U})=0.9237 / 238=3.8811 \mathrm{E}-4$ moles	$[1 \mathrm{mark}]$
$\mathrm{n}(\mathrm{Nb})=\mathrm{n}(\mathrm{U})$ extra $=3.8811 \mathrm{E}-4$ moles	$[1 \mathrm{mark}]$
$\mathrm{m}(\mathrm{Nb})=\mathrm{n}(\mathrm{Nb}) \times \mathrm{M}_{\mathrm{r}}(\mathrm{Nb})=3.8811 \mathrm{E}-4 \mathrm{x} 92.9=0.036055 \mathrm{~g}$	$[1 \mathrm{mark}]$
$\%(\mathrm{Nb})=3.61 \%(3.59-3.63$ acceptable $)$	$[1 \mathrm{mark}]$

Question 17

(a)
(a)

(b)

(c)

(d)

$\begin{array}{ccc}\text { tertiary, } 3^{\circ} & \text { methyl } & \text { secondary, } \\ \text { most stable } & \text { least stable } \\ \text { (order of stability: } \mathrm{a}>\mathrm{c}>\mathrm{d}>\mathrm{b} \text {) }\end{array}$
(b)
(i)

Total = 2: 1 mark for each correct structure
(ii)

Total = 2: $\mathbf{1}$ for each correct structure
(c)

3-methylpent-1-ene
Total $=2$
(d)

The H^{+}adds to the carbon containing more hydrogens already (the less substituted carbon)
The OH^{-}adds to the carbon containing fewer hydrogens (the more substituted carbon)
Total $=2$

- 1 mark for just stating that Markovnikov's rule is involved
(e)

Total = 4: $\mathbf{2}$ marks for each correct structure
(f)

Total = 4: $\mathbf{2}$ marks for each correct structure
(g)

There is no such compound - the primary carbocation is too unstable, so won't form the primary alcohol.
Total 2
(h)

Total 3
(i)

Total 3

- 1 only for giving the non-rearranged product

Question 18

(a) For example, HCl and NaOH
(b) Yes
(c) Must contain an electron pair.
(d) $\mathrm{PH}=-\log 1.5 \times 10^{-3}=2.82$
(d) $\mathrm{pH}=-\log _{10} 1.5 \times 10^{-3}=2.82$
(e) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\left(5.19 \times 10^{-14}\right)^{1 / 2}=2.278 \times 10^{-7}$
(f) Still neutral, since $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right] . \mathrm{pH}=6.642$ is defined as the neutral pH at $50^{\circ} \mathrm{C}$. [1 marks for the answer, 2 marks for the explanation]
(g) $\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CN}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(h) $\mathrm{K}_{\mathrm{a}}=\left(\left[\mathrm{CN}^{-}\right] \times\left[\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right) /[\mathrm{HCN}]\right.$
(i) $\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCN}+\mathrm{OH}^{-}$
(j) $\mathrm{K}_{\mathrm{b}}=\left([\mathrm{HCN}] \mathrm{x}\left[\left[\mathrm{OH}^{-}\right]\right) /\left[\mathrm{CN}^{-}\right]\right.$
(k) $\mathrm{K}_{\mathrm{a}}(\mathrm{HCN}) \times \mathrm{K}_{\mathrm{b}}\left(\mathrm{CN}^{-}\right)=\mathrm{K}_{\mathrm{w}}$
(l) $\mathrm{pH}=-\log _{10} 0.011=1.96$

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Initial conc (M): $0.020 \quad 0 \quad 10^{-7} \approx 0$

Equil conc (M): $0.020-\mathrm{x}$
Approx conc (M): 0.020
$\mathrm{K}_{\mathrm{a}}=1.76 \times 10^{-5}=\mathrm{x}^{2} / 0.020$
$\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.93 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
$\mathrm{pH}=-\log _{10} 5.93 \times 10^{-4}=3.23$
Combination is: 1-96-3-23

x	x
x	x

[4 marks]
(m) All Bronsted-Lowry bases can be Lewis acids and vice versus. A Lewis base is an electron pair donor and a Bronsted-Lowry Base is an H^{+}acceptor.
(n)

$$
\mathrm{FeCl}_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+3 \mathrm{Cl}^{-}
$$

$$
\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}+\mathrm{H}_{3} \mathrm{O}^{+} \quad[1 \text { mark }]
$$

(o) The Fe^{3+} salt is more acidic.

The Fe^{3+} can better polarise the OH bond in water.

Question 19

(a) 6.6 MPa [1.0 mark for $\pm 0.2 \mathrm{MPa}$; subtract 0.5 marks for more than 2 sf or missing or incorrect units.]
(b) All three phases (solid, liquid, gas) coexist at this point. [2.0 marks - 1 each for the mention of 3 phases and for the idea of coexistence (although you don't have to use this wording to get the marks)]
(c)

Temperature	Observation
194 K	Solid sublimes (or turns to gas)

[0.5 marks for temperature ± 1 K; subtract 0.5 marks for more than 3 sf or missing or incorrect units; 0.5 marks for correct observation.]
(d)

Temperature	Observation
217 K	Solid melts (or turns to liquid)
220 K	Liquid evaporates (vaporises, turns to gas)

[1 mark for temperatures: 0.5 mark each for $\pm 1 K$; subtract 0.5 marks for more than 3 sf or missing or incorrect units;
1 mark, 0.5 each for correct observations. In general, whenever this sort of question turns up, all the detail I give in these solutions is not required: a sensible observation is enough to get the marks.]
(e) Take $P_{1}=75 \mathrm{kPa}, T_{1}=190 \mathrm{~K}, P_{2}=520 \mathrm{kPa}, T_{2}=217 \mathrm{~K}$. Then substituting in gives

$$
\Delta_{\text {sub }} H=\frac{R \ln \left(\frac{P_{2}}{P_{1}}\right)}{\frac{1}{T_{1}}-\frac{1}{T_{2}}}=25 \mathrm{~kJ} \mathrm{~mol}^{-1} .
$$

[1 mark for sensible values from graph or elsewhere, 0.5 per pair,
1.0 mark for rearranging equation \& working,
1.0 mark for final result within $\pm 2 \mathrm{~kJ} \mathrm{~mol}^{-1}$; subtract 0.5 marks for more than 3 sf or missing or incorrect units]]
(f) Suppose that a fraction f of the mixture is solid. Then the mole fraction of Sn present is $0.2 f+0.5(1-f)=0.5-0.3 f=0.4$, which gives $f=0.33$.
(This is just the lever rule; although they're not going to know the rule itself they should be able to perform the simple algebra above which gives the specific result I asked for.)
[1 mark for algebraic setup ("a fraction f is solid"), $\mathbf{1}$ mark for deciding to calculate fraction of Sn [or Pb] present, 1 mark for correctly relating fraction of solid and liquid to fraction of Sn [Pb],
1 mark for determining f. Subtract 0.5 marks for more than 2 sf and for minor arithmetic errors like percentages of solid and liquid not adding up to 100.]
(g)

Solid phase containing about $16 \% \mathrm{Sn}$, liquid phase containing about $34 \% \mathrm{Sn}$. [1 mark for line in correct position; 2 marks for phases, 0.5 each for correct phase with composition $\pm 3 \%$, 0.5 each for phase descriptions [solid, liquid].]
(h)

Temperature	Observation
525 K	Solid begins to melt
$525-570 \mathrm{~K}$	Solid continues to melt gradually; both solid and liquid present
570 K	Solid melts completely; liquid only present

[1.5 marks for temperatures $\pm 10 K, 0.5$ each;
1.5 marks for observations, 0.5 each.]
(i) $74 \% \mathrm{Sn}, 26 \% \mathrm{~Pb}$. [1 mark for $\pm 3 \%$.]
(j)

Temperature	Observation
960 K	Some zeta alloy begins to convert to silver-rich alloy
$960-1020 \mathrm{~K}$	Zeta alloy continues to convert to silver-rich alloy; both phases present
1020 K	Remaining zeta alloy melts; still some solid silver-rich alloy present
$1020-1150 \mathrm{~K}$	Silver-rich alloy gradually melts; 1 solid and 1 liquid phase present
1150 K	Alloy melts completely; 1 liquid phase present

[2.5 marks for temperatures $\pm 20 \mathrm{~K}, 0.5$ each;
2.5 marks $=1.5+0.5+0.5$ for observations.]
(k)

Temperature	Observation
760 K	Some X converts to zeta alloy; the rest melts
$760-960 \mathrm{~K}$	Zeta alloy gradually melts; 1 solid and one liquid phase present
960 K	Zeta alloy melts completely; 1 liquid phase present

[1.5 marks for temperatures $\pm 20 K, 0.7$ for each significant T;
2.5 marks $=0.8+0.6+0.6$ for observations. At most 2 marks total if incorrect observations also made.]
(l) $\mathrm{X}=\mathrm{Ag}_{3} \mathrm{Sn}$. [1 mark]

