

2005 National Qualifying Exam – Chemistry

Solutions

1.	. E	9. A
2.	. D	10. B
3.	. D	11. C
4.	. C	12. D
5.	. В	13. D
6.	. E	14. D
7.	. В	15. B
8.	. D	

Question 16

(a) [2 marks each]

(i) $Zn \rightarrow Zn^{2+} + 2e^{-}$ oxidation (ii) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ oxidation (iii) $U^{4+} + 2H_2O \rightarrow UO_2^{2+} + 4H^{+} + 2e^{-}$ oxidation

(b) [2 marks each]

(i) $2 H_2O + U + 2 \underline{H}^+ \rightarrow UO_2^{2^+} + 3 H_2$ (ii) $4 H^+ + \underline{UO_2^{2+}} + Zn \rightarrow Zn^{2+} + U^{4+} + 2 H_2O$ (iii) $2 H_2O + U^{4+} + 2 \underline{Fe^{3+}} \rightarrow 2 Fe^{2+} + UO_2^{2+} + 4 H^+$ (iv) $Fe^{2^+} + \underline{Ce^{4+}} \rightarrow Ce^{3^+} + Fe^{3^+}$

(c)

$$\begin{split} n(Ce^{4+}) &= c(Ce^{4+}) \ x \ v(Ce^{4+}) \\ &= 0.375 \ x \ .02069 \\ &= 0.007759 \ moles & [1 \ mark] \\ n(Fe^{2+}) &= n(Ce^{4+}) = 0.007759 \ moles & [1 \ mark] \\ n_1(U) &= \frac{1}{2} \ x \ n(Fe^{2+}) &= \frac{1}{2} \ x \ 0.007759 = 0.003879 \ moles & [1 \ mark] \\ m_1(U) &= n(U) \ x \ M_r(U) = 0.003879 \ x \ 238 = 0.92329 \ g & [1 \ mark] \\ \% \ (U) &= 92.3 \ \% \ (92.1 - 92.5 \ acceptable) & [1 \ mark] \end{split}$$

(d) Higher

[1 mark]

(e) $p(C_{0}^{4+}) = p(C_{0}^{4+}) \times p(C_{0}^{4+})$	[1 mortz]
$= 0.375 \times 0.01862$	
= 0.0069825 moles	
$n(Fe^{2+}) = n(Ce^{4+}) = 0.0069825$ moles	[1 mark]
$n_2(U) = \frac{1}{2} \times n(Fe^{2+}) = \frac{1}{2} \times .0069825 = 0.0034913$ moles	[1 mark]
$m_2(U) = n(U) \ge M_r(U) = 0.0034913 \ge 238 = 0.83092 \text{ g}$	[1 mark]
% (U) = 83.1 % (82.9 – 83.3 acceptable)	[1 mark]

% (Nb) = 3.61 % (3.59 – 3.63 acceptable)

[1 mark]

Question 17

(a)

(b) (i)

Total = 2: 1 mark for each correct structure

Total = 2: 1 for each correct structure

(c)

3-methylpent-1-ene Total = 2

(d)

The $H^{\scriptscriptstyle +}$ adds to the carbon containing more hydrogens already (the less substituted carbon)

The OH⁻ adds to the carbon containing fewer hydrogens (the more substituted carbon)

Total = 2

- 1 mark for just stating that Markovnikov's rule is involved

(e)

Total = 4: 2 marks for each correct structure

(f)

Total = 4: 2 marks for each correct structure

(g)

There is no such compound – the primary carbocation is too unstable, so won't form the primary alcohol.

Total 2

(h)

Total 3

Total 3 - 1 only for giving the non-rearranged product

Question 18

(a)	For example, HCl and NaOH	[1 mark each]
(b)	Yes	
(c)	Must contain an electron pair.	[1 mark] [1 mark]
(d)	$pH = -log_{10} \ 1.5 \ x \ 10^{-3} = 2.82$	[2 marks]
(e)	$[H_3O^+] = [OH^-] = (5.19 \text{ x } 10^{-14})^{1/2} = 2.278 \text{ x } 10^{-7}$ pH = $-\log_{10} 2.278 \text{ x } 10^{-7} = 6.642$	[1 mark] [1 mark]
(f)	Still neutral, since $[H_3O^+] = [OH^-]$. pH = 6.642 is defined as the neutral pI [1 marks for the answer, 2 marks for the explanation]	H at 50°C. [3 marks]
(g)	$HCN + H_2O \rightleftharpoons CN^- + H_3O^+$	[2 marks]
(h)	$K_a = ([CN^-] x [[H_3O^+]) / [HCN]$	[1 mark]
(i)	$CN^- + H_2O \implies HCN + OH^-$	[2 marks]
(j)	$K_{b} = ([HCN] \times [[OH^{-}]) / [CN^{-}])$	[1 mark]

(k) 1	K _a (HCN) x K _b (CN ⁻	$) = K_w$			[1 mark]
(l) j	$pH = -log_{10}0.011 =$	1.96			[1 mark]
		$CH_3COOH + H_2O$	$0 \rightleftharpoons CH_3CO_2^- +$	H ₃ O ⁺	
]	Initial conc (M):	0.020	0	10 ⁻⁷ ≈0	
]	Equil conc (M):	0.020-x	x	x	
	Approx conc (M):	0.020	X	x	[4 marks]
]	$K_a = 1.76 \times 10^{-5} = 5$ $x = [H_3O^+] = 5.93 \times 10^{-5}$ $pH = -log_{10} = 5.93 \times 10^{-5}$	$x^{2} / 0.020$ $10^{-4} \text{ mol } L^{-1}$ $10^{-4} = 3.23$			
(Combination is: 1-9	96-3-23			[1 mark]
(m)	All Bronstee electron pair	l-Lowry bases can b donor and a Bronst	e Lewis acids and vie ed-Lowry Base is an	ce versus. A H ⁺ acceptor.	Lewis base is an [2 marks]
(n)	FeCl ₃ (s) +	$6 H_2 O \rightleftharpoons Fe(H_2)$	$O)_6^{3+}$ + 3 Cl ⁻		[1 mark]
	$\operatorname{Fe}(\operatorname{H_2O})_6^{3+}$	+ $H_2O \rightleftharpoons Fe(H)$	$(20)_5(OH)^{2+} + H_3C$)+	[1 mark]
(0)	The Fe^{3+} sal The Fe^{3+} can	t is more acidic. 1 better polarise the 0	OH bond in water.		[1 mark] [1 mark]

Question 19

- (a) 6.6 MPa [1.0 mark for ±0.2 MPa; subtract 0.5 marks for more than 2 sf or missing or incorrect units.]
- (b) All three phases (solid, liquid, gas) coexist at this point. [2.0 marks 1 each for the mention of 3 phases and for the idea of coexistence (although you don't have to use this wording to get the marks)]

(c)

Temperature	Observation
194 K	Solid sublimes (or turns to gas)

[0.5 marks for temperature ±1 K; subtract 0.5 marks for more than 3 sf or missing or incorrect units; 0.5 marks for correct observation.]

(d)

Temperature	Observation
217 K	Solid melts (or turns to liquid)
220 K	Liquid evaporates (vaporises, turns to gas)

[1 mark for temperatures: 0.5 mark each for ± 1 K; subtract 0.5 marks for more than 3 sf or missing or incorrect units;

1 mark, 0.5 each for correct observations. In general, whenever this sort of question turns up, all the detail I give in these solutions is not required: a sensible observation is enough to get the marks.]

(e) Take $P_1 = 75$ kPa, $T_1 = 190$ K, $P_2 = 520$ kPa, $T_2 = 217$ K. Then substituting in gives

$$\Delta_{sub} H = \frac{R \ln \left(\frac{P_2}{P_1}\right)}{\frac{1}{T_1} - \frac{1}{T_2}} = 25 \text{ kJ mol}^{-1}.$$

[1 mark for sensible values from graph or elsewhere, 0.5 per pair,

1.0 mark for rearranging equation & working,

1.0 mark for final result within $\pm 2 \text{ kJ mor}^{1}$; subtract 0.5 marks for more than 3 sf or missing or incorrect units]]

(f) Suppose that a fraction *f* of the mixture is solid. Then the mole fraction of Sn present is 0.2f + 0.5(1 - f) = 0.5 - 0.3f = 0.4, which gives f = 0.33.

(This is just the lever rule; although they're not going to know the rule itself they should be able to perform the simple algebra above which gives the specific result I asked for.)

[1 mark for algebraic setup ("a fraction f is solid"), 1 mark for deciding to calculate fraction of Sn [or Pb] present, 1 mark for correctly relating fraction of solid and liquid to fraction of Sn [Pb],

1 mark for determining f. Subtract 0.5 marks for more than 2 sf and for minor arithmetic errors like percentages of solid and liquid not adding up to 100.]

Solid phase containing about 16% Sn, liquid phase containing about 34% Sn. [1 mark for line in correct position; 2 marks for phases, 0.5 each for correct phase with composition $\pm 3\%$, 0.5 each for phase descriptions [solid, liquid].]

1	h)
l	п)

Temperature	Observation
525 K	Solid begins to melt
525–570 K	Solid continues to melt gradually; both solid and liquid present
570 K	Solid melts completely; liquid only present
5 A	

[1.5 marks for temperatures ±10 K, 0.5 each;

1.5 marks for observations, 0.5 each.]

(i) 74% Sn, 26% Pb. [1 mark for ±3%.]

(j)	
Temperature	Observation
960 K	Some zeta alloy begins to convert to silver-rich alloy
960–1020 K	Zeta alloy continues to convert to silver-rich alloy; both phases present
1020 K	Remaining zeta alloy melts; still some solid silver-rich alloy present
1020–1150 K	Silver-rich alloy gradually melts; 1 solid and 1 liquid phase present
1150 K	Alloy melts completely; 1 liquid phase present

[2.5 marks for temperatures ±20 K, 0.5 each;

2.5 marks = 1.5+0.5+0.5 for observations.]

(k)

Temperature	Observation
760 K	Some X converts to zeta alloy; the rest melts
760–960 K	Zeta alloy gradually melts; 1 solid and one liquid phase present
960 K	Zeta alloy melts completely; 1 liquid phase present

[1.5 marks for temperatures ±20 K, 0.7 for each significant T;

2.5 marks = 0.8+0.6+0.6 for observations. At most 2 marks total if incorrect observations also made.]

(l) **X** = Ag₃Sn. [1 mark]