

- CHEMISTRY -

2001 NATIONAL QUALIFYING EXAMINATION

SOLUTIONS GUIDE

Answers are a guide only and do not represent a preferred method of solving problems.

Section A

1E, 2D, 3E, 4B, 5B, 6C, 7D, 8C, 9E, 10D, 11A, 12C, 13A, 14A, 15B

Section B

Q16

(a) (i)
$$Cr_2O_7^{2^-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3^+} + 7H_2O$$

(ii) $CH_3CH_2OH + H_2O \longrightarrow CH_3COOH + 4e^- + 4H^+$
(iii) $CH_3CHO + H_2O \longrightarrow CH_3COOH + 2e^- + 2H^+$
(iv) $Ag^+ + e^- \longrightarrow Ag(s)$
(v) $Fe^{2^+} \longrightarrow Fe^{3^+} + e^-$
(b) (i) $2Cr_2O_7^{2^-} + 3CH_3CH_2OH + 16H^+ \longrightarrow 4Cr^{3^+} + 3CH_3COOH + 11H_2O$ **1**
(ii) $Cr_2O_7^{2^-} + 3CH_3CHO + 8H^+ \longrightarrow 2Cr^{3^+} + 3CH_3COOH + 4H_2O$ **2**
(iii) $Cr_2O_7^{2^-} + 6Fe^{2^+} + 14H^+ \longrightarrow 2Cr^{3^+} + 6Fe^{3^+} + 7H_2O$ **3**
(iv) $CH_3CHO + 2Ag^+ + H_2O \longrightarrow CH_3COOH + 2Ag(s) + 2H^+$

- (c) The overall equation contains protons on the left hand side. Hence, increasing the hydrogen ion concentration (by adding acid) pushes the equilibrium to the right.
- (d) First, the concentration of the Fe^{2+} solution is calculated:

$$n(Fe^{2+}) = \frac{m_{(FeSO_4.7H_2O)}}{MW_{(FeSO_4.7H_2O)}}$$
$$= \frac{7.43}{278.0} = 0.0267 \text{ mol}$$
$$so \left[Fe^{2+}\right] = \frac{n(Fe^{2+})}{V}$$
$$= \frac{7.43}{278.0} \times \frac{1000}{100} = 0.267 \text{ M}$$
so $n_{(Fe^{2+}in 50 \text{ mL aliquot})} = \frac{7.43}{278.0} \times \frac{1000}{100} \times \frac{25}{1000}$

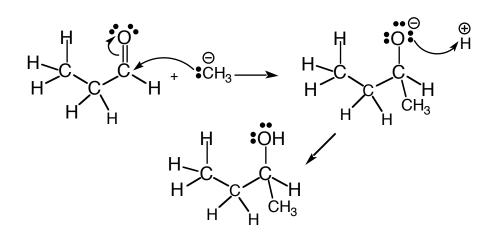
From equation **3** in (b) we see that 1 mol $Cr_2O_7^{2-} \equiv 6 \text{ mol } Fe^{2+}$

$${}^{n}(Cr_{2}O_{7}^{2-}) \text{ reacting with aliquot} = \frac{1}{6} \times \frac{7.43}{278.0} \times \frac{1000}{100} \times \frac{25}{1000} \text{ mol}$$

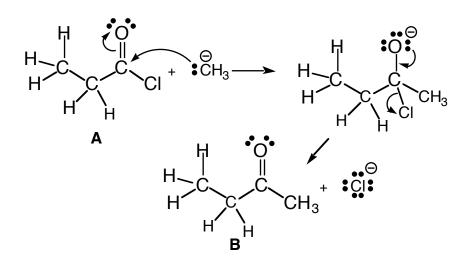
so from titre $\left[Cr_{2}O_{7}^{2-}\right] = \frac{1}{6} \times \frac{7.43}{278.0} \times \frac{1000}{100} \times \frac{25}{1000} \times \frac{1000}{23.12}$
= 0.0482 M

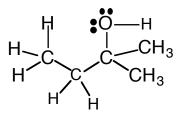

(e) From equation 4 in (b) we see that $1 \mod CH_3CHO = 2 \mod Ag$ (s)

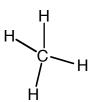
$$n_{(Ag(s))}$$
 produced from 50 mL = $\frac{m_{Ag}}{AW_{Ag}}$
= $\frac{0.234}{107.9}$ = 0.00217 mol
so $n_{(ethanal)}$ in 50 mL = $\frac{1}{2} \times \frac{0.234}{107.9}$ = 0.00108 mol


From equation 2 in (b) we see that 3 mol ethanal = 1 mol $Cr_2O_7^{2-1}$ (f) $n_{(Cr_2O_7^{-1})}$ reacting just with ethanal in 50 ml = $\frac{1}{3} \times \frac{1}{2} \times \frac{1}{107.9} = 0.000361$ mol total $n_{(Cr_2O_7^{2-})}$ used by ethanal/ethanol in 50 mL = $\left[Cr_2O_7^{2-}\right] \times V_{(Cr_2O_7^{2-})}$ $= \left(\frac{1}{6} \times \frac{7.43}{278.0} \times \frac{1000}{100} \times \frac{25}{1000} \times \frac{1000}{23.12}\right) \times \frac{22.45}{1000}$ = 0.00108 molso $n_{(Cr_2O_7^{-})}$ reacting just with ethanol in 50 mL = $n_{(Cr_2O_7^{-})}$ note that $n_{(Cr_2O_7^{-})}$ reacting just with ethanol in 50 mL = $n_{(Cr_2O_7^{-})}$ reacting just with e = 0.00108 - 0.000361= 0.000720 molFrom equation **1** in (b) we see that 3 mol ethanol = 2 mol $Cr_2O_7^{2-1}$ (g) (i) n_{ethanol} in 50 mL = $\frac{3}{2} \times n_{(\text{Cr}_2\text{O}_7^{2-})_{\text{ethanol}}}$ so n_{ethanol} in 500 mL = $\frac{500}{50} \times \frac{3}{2} \times n_{(\text{Cr}_2\text{O}_7^{2-})_{\text{ethanol}}}$ $=\frac{500}{50} \times \frac{3}{2} \times 0.000720 = 0.0108 \text{ mol}$ From equation **2** in (b) we see that 3 mol ethanal = 1 mol $Cr_2O_7^{2-}$ (ii) n_{ethanal} in 50 mL = 3 × $n_{(\text{Cr}_2\text{O}_7^{2-})_{\text{ethanal}}}$ so n_{ethanal} in 500 mL = $\frac{500}{50} \times 3 \times n_{(\text{Cr}_2\text{O}_7^{2-})}$ $=\frac{500}{50} \times 3 \times \left(\frac{1}{3} \times \frac{1}{2} \times \frac{0.234}{1079}\right) = 0.0108 \text{ mol}$

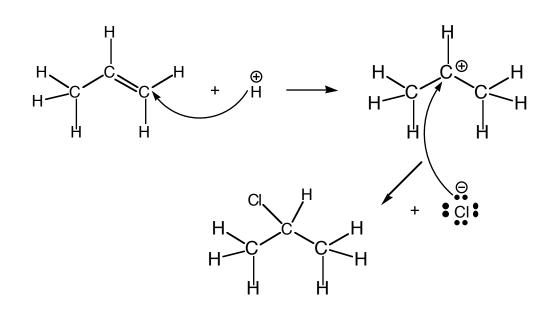
Q17 (a)


CI CI CI	electrophile
	nucleophile
H H N H	nucleophile
H H C H	neither


(c)



(d)



(e) The structure of compound **X** is

(g)

Q18

(a)
$$BaO(s) + H_2O(1) \longrightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$$

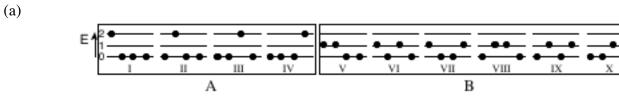
 $In_2O_3(s) + 3 H_2O(1) \longrightarrow 2In^{3+}(aq) + 6OH^{-}(aq)$ (or $2In(OH)_3(s)$)
(b) $SO_2(g) + H_2O(1) \longrightarrow H_2SO_3(aq)$

 $SO_3(g) + H_2O(l) \longrightarrow H^+(aq) + HSO_4^-(aq)$

(c) SO_3 is the more acidic oxide and hence forms the stronger acid, H_2SO_4 .

- For a given series the acid strength increases with an increase in the number of oxygen atoms attached to the central atom. Zumdahl suggests that this happens because the very electronegative O atoms are able to draw electrons away from the central atom and the O-H bond, the net effect is to both polarise and weaken the O-H bond and is more important as the number of attached O atoms increases.
- An **alternative explanation** is: S is in the +6 oxidation state in SO_3 and H_2SO_4 compared with the +4 state in SO_2 and H_2SO_3 . In the +6 state S will more strongly attract electron density from the neighbouring O atoms in turn weakening the O-H interaction in the acid and hence leading to a stronger acid.
- (d) $HClO < HClO_2 < HClO_3 < HClO_4$
- (e) SnO is the more basic oxide.

Sn is in the +2 oxidation state in SnO and the +4 state in SnO_2 . In the +2 state Sn will less strongly attract electron density from the neighbouring O atoms leading to a more ionic and hence more basic oxide.


$$Mg_3N_2(s) + 6H_2O(l) \longrightarrow 3Mg^{2+}(aq) + 6OH^{-}(aq) + 2NH_3(aq)$$

(i) **PH**₃

$$Na_3P(s) + 3H_2O(1) \longrightarrow 3Na^+(aq) + OH^-(aq) + PH_3(g)$$

(j) NH₃ is the stronger base. N is more electronegative than P and hence the N atom in NH₃ will attract/bind a proton more strongly than the P atom in PH₃.

Q19

(b) (i) There are 10 microstates.

(ii) There are 2 different configurations.

Configuration	Occupation Numbers	Number of Microstates
Α	$n_0 = 2, n_3 = 1$	3
В	$n_0 = 1, n_1 = 1, n_2 = 1$	6
С	n ₁ = 3	1

(ii) For N = 4, E = 2

Α	$n_0 = 3, n_2 = 1$	4
В	$n_0 = 2, n_1 = 2$	6

(d) (i) for A

$$W = \left(\frac{N!}{n_0! \times n_1! \times n_2! \times \dots}\right)$$
$$= \frac{4!}{n_0! \times n_2!}$$
$$= \frac{4!}{3! \times 1!}$$
$$= \frac{24}{6 \times 1}$$

= 4 microstates

for B

$$W = \left(\frac{N!}{n_0! \times n_1! \times n_2! \times ...}\right)$$

$$= \frac{4!}{n_0! \times n_1!}$$

$$= \frac{4!}{2! \times 2!}$$

$$= \frac{24}{2 \times 2}$$

$$= 6 \text{ microstates}$$

(ii) and (iii)

Configuration	Occupation Numbers	Number of Microstates
Α	$(n_0 = 9, n_5 = 1)$	10
В	$n_0 = 8, n_1 = 1, n_4 = 1$	90
С	$n_0 = 8, n_2 = 1, n_3 = 1$	90
D	$n_0 = 7, n_1 = 2, n_3 = 1$	360
Е	$n_0 = 7, n_1 = 1, n_2 = 2$	360
F	$n_0 = 6, n_1 = 3, n_2 = 1$	840
G	$(n_0 = 5, n_1 = 5)$	252

(iv) Total number of microstates = 2002 Most probable configuration = F ($n_0 = 6, n_1 = 3, n_2 = 1$) Probability of adopting most probable configuration = $\frac{840}{2002}$ = 0.420

(e) (i)

$$W = \frac{10!}{3! \times 3! \times 2! \times 1! \times 1!}$$

= 50,400
(ii) N_x = 5, N_y = 5

(f) (i)

$$W = \frac{10!}{2! \times 6! \times 1! \times 1!}$$

= 2,520

(ii) Now $N_Y = 7$, $N_X = 3$, ie more Y than X. This is what you might expect given that Y is lower in energy than X or Y is more stable than X.