CHEMISTRY

2001 NATIONAL QUALIFYING EXAMINATION

SOLUTIONS GUIDE

Section A

$1 \mathrm{E}, 2 \mathrm{D}, 3 \mathrm{E}, 4 \mathrm{~B}, 5 \mathrm{~B}, 6 \mathrm{C}, 7 \mathrm{D}, 8 \mathrm{C}, 9 \mathrm{E}, 10 \mathrm{D}, 11 \mathrm{~A}, 12 \mathrm{C}, 13 \mathrm{~A}, 14 \mathrm{~A}, 15 \mathrm{~B}$

Section B

Q16
(a) (i) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+4 \mathrm{e}^{-}+4 \mathrm{H}^{+}$
(iii) $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{e}^{-}+2 \mathrm{H}^{+}$
(iv) $\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})$
(v) $\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
(b) (i) $2 \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+16 \mathrm{H}^{+} \longrightarrow 4 \mathrm{Cr}^{3+}+3 \mathrm{CH}_{3} \mathrm{COOH}+11 \mathrm{H}_{2} \mathrm{O} \quad \mathbf{1}$
(ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{CH}_{3} \mathrm{CHO}+8 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{CH}_{3} \mathrm{COOH}+4 \mathrm{H}_{2} \mathrm{O} \quad 2$
(iii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \quad 3$
(iv) $\mathrm{CH}_{3} \mathrm{CHO}+2 \mathrm{Ag}^{+}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{H}^{+} \quad 4$
(c) The overall equation contains protons on the left hand side. Hence, increasing the hydrogen ion concentration (by adding acid) pushes the equilibrium to the right.
(d) First, the concentration of the Fe^{2+} solution is calculated:

$$
\begin{aligned}
& \mathrm{n}\left(\mathrm{Fe}^{2+}\right)=\frac{\mathrm{m}_{\left(\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)}}{\mathrm{MW}_{\left(\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)}} \\
&=\frac{7.43}{278.0}=0.0267 \mathrm{~mol} \\
& \text { so }\left[\mathrm{Fe}^{2+}\right]=\frac{\mathrm{n}\left(\mathrm{Fe}^{2+}\right)}{\mathrm{V}} \\
&=\frac{7.43}{278.0} \times \frac{1000}{100}=0.267 \mathrm{M} \\
& \text { so } \mathrm{n}_{\left(\mathrm{Fe}^{2+} \text { in } 50 \mathrm{~mL} \text { aliquot }\right)}=\frac{7.43}{278.0} \times \frac{1000}{100} \times \frac{25}{1000}
\end{aligned}
$$

From equation 3 in (b) we see that $1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \equiv 6 \mathrm{~mol} \mathrm{Fe}^{2+}$

$$
\begin{aligned}
\mathrm{n}_{\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)} \text { reacting with aliquot } & =\frac{1}{6} \times \frac{7.43}{278.0} \times \frac{1000}{100} \times \frac{25}{1000} \mathrm{~mol} \\
\text { so from titre }\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right] & =\frac{1}{6} \times \frac{7.43}{278.0} \times \frac{1000}{100} \times \frac{25}{1000} \times \frac{1000}{23.12} \\
& =0.0482 \mathrm{M}
\end{aligned}
$$

(e) From equation 4 in (b) we see that $1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CHO} \equiv 2 \mathrm{~mol} \mathrm{Ag}$ (s)

$$
\begin{aligned}
\mathrm{n}_{(\mathrm{Ag}(\mathrm{~s}))} \text { produced from } 50 \mathrm{~mL} & =\frac{\mathrm{m}_{\mathrm{Ag}}}{\mathrm{AW}_{\mathrm{Ag}}} \\
& =\frac{0.234}{107.9}=0.00217 \mathrm{~mol}
\end{aligned}
$$

so $\mathrm{n}_{\text {(ethanal) }}$ in $50 \mathrm{~mL}=\frac{1}{2} \times \frac{0.234}{107.9}=0.00108 \mathrm{~mol}$
(f) From equation $\mathbf{2}$ in (b) we see that 3 mol ethanal $\equiv 1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$

$$
\begin{aligned}
\mathrm{n}_{\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)} \text { reacting just with ethanal in } 50 \mathrm{ml} & =\frac{1}{3} \times \frac{1}{2} \times \frac{0.234}{107.9}=0.000361 \mathrm{~mol} \\
\text { total } \mathrm{n}_{\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)} \text { used by ethanal/ethanol in } 50 \mathrm{~mL} & =\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right] \times \mathrm{V}_{\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)} \\
& =\left(\frac{1}{6} \times \frac{7.43}{278.0} \times \frac{1000}{100} \times \frac{25}{1000} \times \frac{1000}{23.12}\right) \times \frac{22.45}{1000} \\
& =0.00108 \mathrm{~mol}
\end{aligned}
$$

so $\mathrm{n}_{\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2}\right)}$ reacting just with ethanol in $50 \mathrm{~mL}=\mathrm{n}_{\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2}\right)_{\text {Total }}}-\mathrm{n}_{\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}\right)_{\text {Ethanal }}}$

$$
=0.00108-0.000361
$$

$$
=0.000720 \mathrm{~mol}
$$

(g) (i) From equation 1 in (b) we see that 3 mol ethanol $\equiv 2 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$

$$
\begin{aligned}
\mathrm{n}_{\text {ethanol }} \text { in } 50 \mathrm{~mL} & =\frac{3}{2} \times \mathrm{n}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)_{\text {ethanol }} \\
\text { so } \mathrm{n}_{\text {ethanol }} \text { in } 500 \mathrm{~mL} & =\frac{500}{50} \times \frac{3}{2} \times \mathrm{n}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)_{\text {ethanol }} \\
& =\frac{500}{50} \times \frac{3}{2} \times 0.000720=0.0108 \mathrm{~mol}
\end{aligned}
$$

(ii) From equation 2 in (b) we see that 3 mol ethanal $\equiv 1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$

$$
\begin{aligned}
\mathrm{n}_{\text {ethanal }} \text { in } 50 \mathrm{~mL} & =3 \times \mathrm{n}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)_{\text {ethanal }} \\
\text { so } \mathrm{n}_{\text {ethanal }} \text { in } 500 \mathrm{~mL} & =\frac{500}{50} \times 3 \times \mathrm{n}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)_{\text {ethanal }} \\
& =\frac{500}{50} \times 3 \times\left(\frac{1}{3} \times \frac{1}{2} \times \frac{0.234}{107.9}\right)=0.0108 \mathrm{~mol}
\end{aligned}
$$

Q17

(a)

	electrophile
$\stackrel{\ominus}{\ominus} \stackrel{\ominus}{\mathrm{C}} \stackrel{-}{\bullet-}$	nucleophile
	nucleophile
	neither

(b)

(c)

(d)

(e) The structure of compound \mathbf{X} is

(f)

The gas evolved was methane

(g)

Q18
(a)
$\mathrm{BaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{In}^{3+}(\mathrm{aq})+6 \mathrm{OH}^{-}(\mathrm{aq}) \quad$ (or $\left.2 \operatorname{In}(\mathrm{OH})_{3}(\mathrm{~s})\right)$
(b)
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
$\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})$
(c) $\quad \mathrm{SO}_{3}$ is the more acidic oxide and hence forms the stronger acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

For a given series the acid strength increases with an increase in the number of oxygen atoms attached to the central atom. Zumdahl suggests that this happens because the very electronegative O atoms are able to draw electrons away from the central atom and the $\mathrm{O}-\mathrm{H}$ bond, the net effect is to both polarise and weaken the $\mathrm{O}-\mathrm{H}$ bond and is more important as the number of attached O atoms increases.
An alternative explanation is: S is in the +6 oxidation state in SO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ compared with the +4 state in SO_{2} and $\mathrm{H}_{2} \mathrm{SO}_{3}$. In the +6 state S will more strongly attract electron density from the neighbouring O atoms in turn weakening the $\mathrm{O}-\mathrm{H}$ interaction in the acid and hence leading to a stronger acid.
(d) $\quad \mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
(e) $\quad \mathrm{SnO}$ is the more basic oxide.

Sn is in the +2 oxidation state in SnO and the +4 state in SnO_{2}. In the +2 state Sn will less strongly attract electron density from the neighbouring O atoms leading to a more ionic and hence more basic oxide.

$$
\begin{array}{ll}
\text { (f) } & \mathrm{BeO}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Be}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{BeO}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow\left[\mathrm{Be}(\mathrm{OH})_{4}\right]^{2-}(\mathrm{aq}) \\
& \mathrm{As}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{As}^{3+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{As}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{AsO}_{3}^{3-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{BaO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \\
& 2 \mathrm{gO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})
\end{array}
$$

(h) $\quad \mathrm{NH}_{3}$

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 3 \mathrm{Mg}^{2+}(\mathrm{aq})+6 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq})
$$

(i) PH_{3}
$\mathrm{Na}_{3} \mathrm{P}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 3 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{PH}_{3}(\mathrm{~g})$
(j) $\quad \mathrm{NH}_{3}$ is the stronger base. N is more electronegative than P and hence the N atom in NH_{3} will attract/bind a proton more strongly than the P atom in PH_{3}.

Q19
(a)

(b) (i) There are 10 microstates.
(ii) There are 2 different configurations.
(c) (i) $\operatorname{For} \mathrm{N}=3, \mathrm{E}=3$

Configuration	Occupation Numbers	Number of Microstates
\mathbf{A}	$\mathrm{n}_{0}=2, \mathrm{n}_{3}=1$	3
\mathbf{B}	$\mathrm{n}_{0}=1, \mathrm{n}_{1}=1, \mathrm{n}_{2}=1$	6
\mathbf{C}	$\mathrm{n}_{1}=3$	1

(ii) For $\mathrm{N}=4, \mathrm{E}=2$

\mathbf{A}	$\mathrm{n}_{0}=3, \mathrm{n}_{2}=1$	4
\mathbf{B}	$\mathrm{n}_{0}=2, \mathrm{n}_{1}=2$	6

(d) (i) for A

$$
\begin{aligned}
\mathrm{W} & =\left(\frac{\mathrm{N!}}{\mathrm{n}_{0}!\times \mathrm{n}_{1}!\times \mathrm{n}_{2}!\times \ldots}\right) \\
& =\frac{4!}{\mathrm{n}_{0}!\times \mathrm{n}_{2}!} \\
& =\frac{4!}{3!\times 1!} \\
& =\frac{24}{6 \times 1} \\
& =4 \text { microstates }
\end{aligned}
$$

for B

$$
\begin{aligned}
\mathrm{W} & =\left(\frac{\mathrm{N!}}{\mathrm{n}_{0}!\times \mathrm{n}_{1}!\times \mathrm{n}_{2}!\times \ldots}\right) \\
& =\frac{4!}{\mathrm{n}_{0}!\times \mathrm{n}_{1}!} \\
& =\frac{4!}{2!\times 2!} \\
& =\frac{24}{2 \times 2} \\
& =6 \text { microstates }
\end{aligned}
$$

(ii) and (iii)

Configuration	Occupation Numbers	Number of Microstates
\mathbf{A}	$\left(\mathrm{n}_{0}=9, \mathrm{n}_{5}=1\right)$	10
\mathbf{B}	$\mathrm{n}_{0}=8, \mathrm{n}_{1}=1, \mathrm{n}_{4}=1$	90
\mathbf{C}	$\mathrm{n}_{0}=8, \mathrm{n}_{2}=1, \mathrm{n}_{3}=1$	90
\mathbf{D}	$\mathrm{n}_{0}=7, \mathrm{n}_{1}=2, \mathrm{n}_{3}=1$	360
\mathbf{E}	$\mathrm{n}_{0}=7, \mathrm{n}_{1}=1, \mathrm{n}_{2}=2$	360
\mathbf{F}	$\mathrm{n}_{0}=6, \mathrm{n}_{1}=3, \mathrm{n}_{2}=1$	840
\mathbf{G}	$\left(\mathrm{n}_{0}=5, \mathrm{n}_{1}=5\right)$	252

(iv) Total number of microstates $=2002$

Most probable configuration $=\mathrm{F}\left(\mathrm{n}_{0}=6, \mathrm{n}_{1}=3, \mathrm{n}_{2}=1\right)$
Probability of adopting most probable configuration $=\frac{840}{2002}$

$$
\begin{aligned}
& =0.420 \\
& =42 \%
\end{aligned}
$$

(e) (i)

$$
\begin{aligned}
\mathrm{W} & =\frac{10!}{3!\times 3!\times 2!\times 1!\times 1!} \\
& =50,400
\end{aligned}
$$

(ii) $\mathrm{N}_{\mathrm{X}}=5, \mathrm{~N}_{\mathrm{Y}}=5$
(f) (i)

$$
\begin{aligned}
\mathrm{W} & =\frac{10!}{2!\times 6!\times 1!\times 1!} \\
& =2,520
\end{aligned}
$$

(ii) Now $N_{Y}=7, N_{X}=3$, ie more Y than X . This is what you might expect given that Y is lower in energy than X or Y is more stable than X .

