2000 NATIONALQUALIFYING EXAMINATION

SOLUTIONS GUIDE

Answers are a guide only and do not represent a preferred method of solving problems.

Section A

$1 \mathrm{~B}, 2 \mathrm{~A}, 3 \mathrm{C}, 4 \mathrm{C}, 5 \mathrm{D}, 6 \mathrm{D}, 7 \mathrm{~A}, 8 \mathrm{~B}, 9 \mathrm{E}, 10 \mathrm{~B}, 11 \mathrm{~A}, 12 \mathrm{D}, 13 \mathrm{E}, 14 \mathrm{C}, 15 \mathrm{E}$

Section B

Q16
(a) $\quad 2 \mathrm{PbS}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{PbO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})$
(b) It is important to limit the supply of air to avoid further oxidation of PbO to PbO_{2} and SO_{2} to SO_{3}.
(c) The elemental lead must also be oxidised under these conditions, and so will react to form PbO as well:

$$
2 \mathrm{~Pb}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{PbO}(\mathrm{~s})
$$

(d)

$$
\begin{aligned}
P V_{S O_{2}} & =n_{S O_{2}} R T \\
n_{S O_{2}} & =\frac{P V_{S O_{2}}}{R T} \\
\text { but } n_{P b S} & =n_{S O_{2}} \\
\text { so } n_{P b S} & =\frac{P V_{S O_{2}}}{R T} \\
& =\frac{101.3 \mathrm{kPa} \cdot V_{S O_{2}}}{8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} .298 \mathrm{~K}} \\
& =0.0409 \mathrm{molL}^{-1} \times V_{S O_{2}}
\end{aligned}
$$

(e) $\quad 2 \mathrm{PbO}(\mathrm{s})+\mathrm{PbS}(\mathrm{s}) \longrightarrow 3 \mathrm{~Pb}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})$
(f) Pb^{2+} oxidises $\mathrm{S}(-\mathrm{II})$ to $\mathrm{S}(\mathrm{IV})$ and so is the oxidising agent in this reaction
(g) From the equation given in part (d) we have

$$
\begin{aligned}
n_{P b S}= & 0.0409 \mathrm{molL}^{-1} \times V_{S O_{2}} \\
\text { so } n_{P b S}= & 0.0409 \mathrm{molL}^{-1} \times 0.0662 \mathrm{~L} \\
= & 2.71 \times 10^{-3} \mathrm{~mol} \\
& \text { but this is only for two thirds } \\
\text { sototal } n_{P b S}= & 3 / 2 \times 2.71 \times 10^{-3} \mathrm{~mol} \\
= & 4.06 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

but this is only for two thirds of the sample
(h)

$$
\begin{aligned}
\text { Purity } & =\frac{m_{P b S}}{m_{\text {galena }}} \\
& =\frac{4.06 \times 10^{-3} \mathrm{~mol} \times 239.266 \mathrm{gmol}^{-1}}{1.045 \mathrm{~g}} \\
& =0.929 \mathrm{~g} / \mathrm{g} \text { of galena or } 93.0 \%
\end{aligned}
$$

(i)

$$
\begin{aligned}
m_{P b o} & =n_{P b S} \times F W_{P b o} \\
& =2.71 \times 10^{-3} \mathrm{~mol} \times 223.2 \mathrm{gmol}^{-1} \\
& =0.605 \mathrm{~g}
\end{aligned}
$$

(j)

$$
\begin{aligned}
n_{P b+P b S} & =\frac{m_{P b}}{F W_{P b}} \\
& =\frac{0.8663 \mathrm{~g}}{207.2 \mathrm{gmol}^{-1}} \\
& =4.18 \times 10^{-3} \mathrm{~mol} \\
\text { so\%Elemental Lead } & =\frac{n_{P b}}{n_{P b+P b S}} \\
& =\frac{4.18 \times 10^{-3} \mathrm{~mol}-4.06 \times 10^{-3} \mathrm{~mol}}{4.18 \times 10^{-3} \mathrm{~mol}} \\
& =2.9 \%
\end{aligned}
$$

(k) In the solution we have $4.18 \times 10^{-3} \mathrm{~mol}$ of Pb^{2+} to $1.67 \times 10^{-2} \mathrm{~mol}^{\mathrm{m}} \mathrm{OH}^{-}$, which is in the ratio $1: 4$. Hence we would suspect $\left[\mathrm{Pb}(\mathrm{OH})_{4}\right]^{2-}$ to be present in solution. Note that the oxidation state of Pb is unchanged in this species.

Q17

(a) 9 Ser-Gly-Cys-Lys-Ile-Ile-Ser-Ala-Ser-Thr-Cys-Pro-Ser-Tyr-Pro-Asp-Lys
(b) 2 Lys-Ser-Cys-Cys-Pro-Asn-Thr-Thr-Gly-Arg
(c) 6 Asn-Thr-Cys-Arg-Phe

7 Gly-Gly-Gly-Ser-Arg-Glu-Val-Cys-Ala-Ser-Leu
(d) Peptides from trypsin cleavage:

1 Asn-Ile-Tyr-Asn-Thr-Cys-Arg
2 Lys-Ser-Cys-Cys-Pro-Asn-Thr-Thr-Gly-Arg
3 Ile-Ile-Ser-Ala-Ser-Thr-Cys-Pro-Ser-Tyr-Pro-Asp-Lys
4 Phe-Gly-Gly-Gly-Ser-Arg
5 Ser-Cys-Cys-Pro-Asn-Thr-Thr-Gly-Arg
Peptides from chymotrypsin cleavage:
6 Asn-Thr-Cys-Arg-Phe
7 Gly-Gly-Gly-Ser-Arg-Glu-Val-Cys-Ala-Ser-Leu
8 Lys-Ser-Cys-Cys-Pro-Asn-Thr-Thr-Gly-Arg-Asn-Ile-Tyr
9 Ser-Gly-Cys-Lys-Ile-Ile-Ser-Ala-Ser-Thr-Cys-Pro-Ser-Tyr-Pro-Asp-Lys
(e) 7 Gly-Gly-Gly-Ser-Arg-Glu-Val-Cys-Ala-Ser-Leu

Leu is a C-terminus resulting from a chymotrypsin cleavage and this is unexpected as chymotrypsin normally cleaves an amide bond to leave a C-terminus of either Phe, Tyr or Trp.
(f)

Q18
(a) (i) 2 geometrical isomers

(iii) 3 geometrical isomers

(ii) 2 geometrical isomers

(iv) 2 geometrical isomers

(b) (i) cis- $\left[\mathrm{CoCl}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$has the structure

1 geometrical isomer

1 linkage isomer

(ii) trans-[Pd(SCN) $\left.)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$. Has the structure

1 geometric isomer

2 linkage isomers

(c) (i) square planar $\left[\operatorname{Pt}(\mathrm{SCN})_{2}(\mathrm{dmen})\right]$ has the structure

As there is only one structure possible there is therefore no geometrical isomer. 3 linkage isomers

(ii) cis- $\left[\mathrm{Co}(\mathrm{ONO})_{2}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{en})\right]^{+}$.has the structure

2 geometrical isomers

3 linkage isomers

If you have been alert and careful you will have seen that there is another structure for the cis isomer and each of the three linkage isomers, these are shown and explained in (d).
(d) The complex ion cis-[$\left.\mathrm{Co}(\mathrm{ONO})_{2}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{en})\right]^{+}$(c) (ii) and its three linkage isomers all have nonsuperimposable mirror images and hence exhibit optical isomerism. All the rest have superimposable mirror images and hence do not exhibit optical isomerism.
The alternative structures alluded to in (c) (ii) are cis- $\left[\mathrm{Co}(\mathrm{ONO})_{2}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{en})\right]^{+}$

3 linkage isomers

Rotating these four structures 180° around the vertical axis produces the structures drawn below and we can see that they are the mirror images of the cis isomer and its three linkage isomers in (c) (ii).

(e) (i) There are two stereoisomers.

(where $\bigcirc \mathrm{O}_{\mathrm{O}}$ is $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{3-}$
and $n=3$)
(ii) There are three stereoisomers.

(where \overparen{N} is en
(iii) There are two stereoisomers.

(where N N' is dmen
(iv) There are two stereoisomers.

Q19
(a) Person A has a dormant tumor in the left eye.

Person B has an active tumor in the right eye.

$$
\begin{aligned}
\text { Activity after 3 hours } & =\frac{\begin{array}{l}
\text { average count } \\
\text { around } 3 \text { hours }
\end{array}}{30 \text { photons } / \mathrm{Bq}} \begin{array}{c}
\text { Count rate for } \\
\text { normal eye }
\end{array} \\
& =\frac{470-190}{30} \\
& =9.3 \mathrm{~Bq}
\end{aligned}
$$

Proportion of original injection in eye $=\frac{9.3}{3.7 \times 10^{-6}}$

$$
=2.5 \times 10^{-4} \%
$$

(b) The β particle is an electron emitted from the nucleus when a neutron transforms to a proton.

$$
{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{+}^{1} \mathrm{p}+{ }_{-}^{0} \beta
$$

The ${ }^{32} \mathrm{P}$ becomes ${ }^{32} \mathrm{~S}$

$$
{ }_{15}^{32} \mathrm{P} \rightarrow{ }_{16}^{32} \mathrm{~S}+\beta
$$

(c)

$$
\begin{aligned}
& \mathrm{t}_{\boldsymbol{k}_{2}}=\frac{\ln 2}{\mathrm{k}} \\
& \text { so } k=\frac{\ln 2}{\mathrm{t}_{\mathrm{k}}} \\
& =\frac{6.9315 \times 10^{-1}}{14} \\
& =0.049511
\end{aligned}
$$

If A is final activity, A_{0} is initial activity and t is time then $\mathrm{A}=\mathrm{A}_{0} \mathrm{e}^{-\mathrm{kt}}$

$$
\begin{aligned}
& =3.7 \times 10^{6} \times \mathrm{e}^{-(0.099511200)} \\
& =3.7 \times 10^{6} \times 3.7150 \times 10^{-1} \\
& =1.37 \times 10^{6} \mathrm{~Bq}
\end{aligned}
$$

