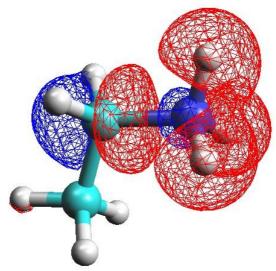
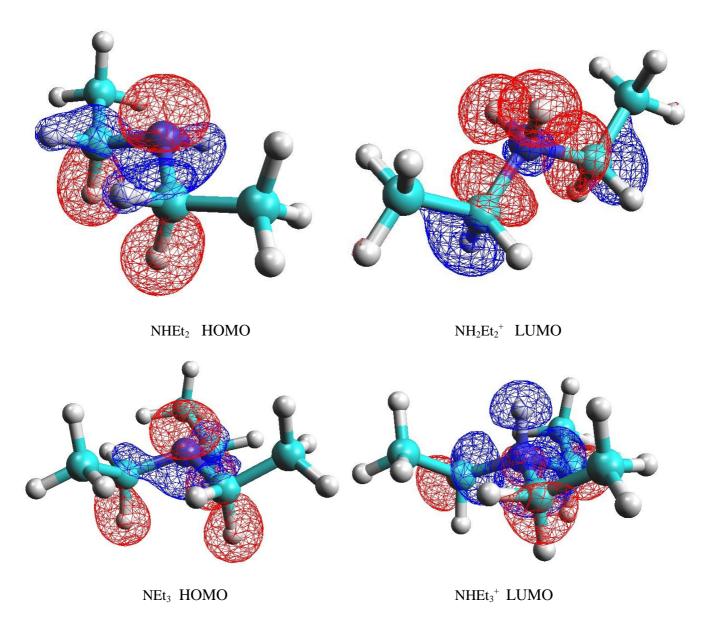

Basicità delle ammine alifatiche e aromatiche

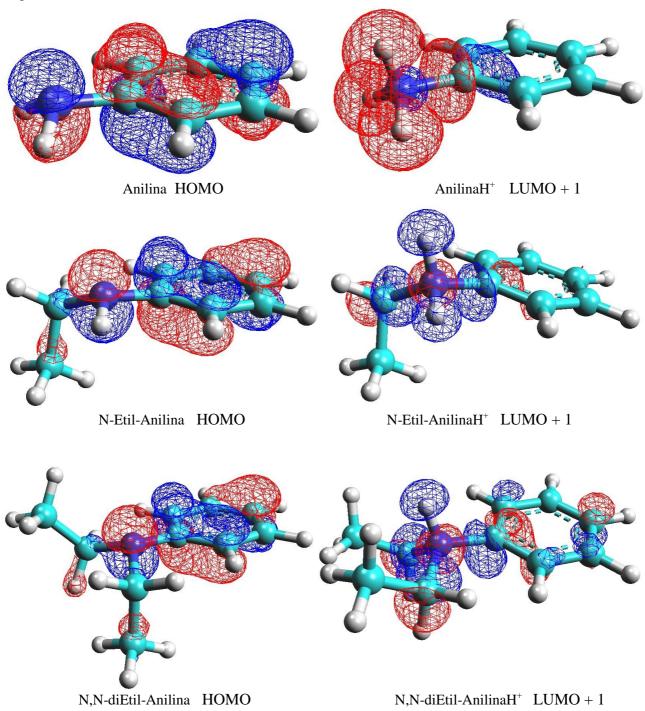
Usando ArgusLab si può calcolare l'entalpia di formazione delle ammine nella forma libera e in quella protonata. Dalla differenza tra i due valori si può valutare quanto instabile è una forma rispetto all'altra e quindi si può stimare la basicità dell'ammina. Sulla destra sono riportate le pK_a.


Calore di formazione calcolato	molecola	metodo ArgusLab	ΔH di protonazione calcolato	pK_a
-12,4746 kcal/mol 144,3253 kcal/mol	NH_2Et NH_3Et^+	PM3 PM3	156,80 kcal/mol	10,65
-19,5240 kcal/mol 135,0867 kcal/mol	$\begin{array}{c} NHEt_2 \\ NH_2Et_2^+ \end{array}$	PM3 PM3	154,61 kcal/mol	10,84
-26,4970 kcal/ mol 126,9712 kcal/mol	NEt ₃ NHEt ₃ ⁺	PM3 PM3	153,47 kcal/mol	10,75
21,3544 kcal/mol 175,1318 kcal/mol	Anilina AnilinaH ⁺	PM3 PM3	153,78 kcal/mol	4,87
13,9440 kcal/mol 169,0002 kcal/mol	N-Etil-Anilina N-Etil-AnilinaH ⁺	PM3 PM3	155.06 kcal/mol	5,12
9,2143 kcal/mol 163,6704 kcal/mol	N,N-diEtil-Anilina N,N-diEtil-AnilinaH ⁺	PM3 PM3	154,46 kcal/mol	6,57

I dati ottenuti con ArgusLab suggeriscono (erroneamente) una maggiore stabilità della forma protonata sia per l'ammina terziaria alifatica, sia per quella aromatica rispetto alle ammine secondarie (ΔH di formazione leggermente inferiori).


L'errore nasce dal fatto che ArgusLab calcola la molecola nel vuoto e quindi non tiene conto dell'ingombro sterico e dell'effetto che questo ha sulla solvatazione della carica positiva. Per valutare l'ingombro sterico, almeno in modo intuitivo, si devono osservare i modelli tridimensionali delle ammine. Cominciamo con le ammine alifatiche:

NH₂Et HOMO Orbitale di non legame (doppietto basico)


 NH_3Et^+ LUMO Orbitale di antilegame (ospita la carica +)

Nell'immagine di destra della trietilammina protonata si nota che l'H⁺ è circondato dai tre gruppi etile che ostacolano la solvatazione della carica positiva.

Anche se i tre gruppi etilici stabilizzano la carica positiva per effetto induttivo, producono un forte ingombro sterico che ostacola la solvatazione della carica positiva. Quindi l'ammina terziaria alifatica invece di essere più basica di quella secondaria a causa del maggior effetto induttivo, risulta invece un po' meno basica a causa dell'ingombro sterico.

Seguono ora le ammine aromatiche.

Nella dietil anilina protonata (a destra) si nota che l'H⁺ è circondato strettamente dai due etili, mentre invece l'anello benzenico resta più lontano. In questa molecola il solvente può stabilizzare meglio la carica positiva rispetto a quanto osservato con la trietil ammina,. Quindi si può dire che gli effetti induttivi che stabilizzano la carica positiva rendono l'ammina terziaria aromatica più basica, senza che intervengano effetti di ingombro sterico a limitarne la basicità come invece accade per le ammine terziarie alifatiche.