38

• told that H: reacts with water • told that H: is a strong base · therefore, H: removes a proton from water H: + H-0-H ---· overall reaction is H: + H-Ö-H - H-H + :Ö-H aon jugate acid of H: is H2

Table 1.8 lists a number of acids, their acidity constants, and their conjugate bases. The list is more extensive than we need at this point, but we will return to it repeatedly throughout the text as new aspects of acid-base behavior are introduced. The table is organized so that acid strength decreases from top to bottom. Conversely, the strength of the conjugate base increases from top to bottom. Thus, *the stronger the acid, the weaker its conjugate base. The stronger the base, the weaker its conjugate acid.*

Acid	p <i>K</i> _a	Formula	Conjugate base	Discussed in section
Hydrogen iodide Hydrogen bromide Sulfuric acid Hydrogen chloride Hydronium ion* Nitric acid Hydrogen sulfate ion Hydrogen fluoride	$ \begin{array}{r} -10.4 \\ -5.8 \\ -4.8 \\ -3.9 \\ -1.7 \\ -1.4 \\ 2.0 \\ 3.1 \\ \end{array} $	HI HBr HOSO ₂ OH HCI H $_3$ O ⁺ HONO ₂ HOSO ₂ O ⁻ HF	I ⁻ Br ⁻ HOSO ₂ O ⁻ CI ⁻ H ₂ O -ONO ₂ -OSO ₂ O ⁻ F ⁻	$1.15 \\ 1.15 \\ 1.16 \\ 1.15 \\ 1.16 \\ 1.15 \\ 1.16 \\ 1.15 \\ 1.16 \\ 1.15 \\ 1.16 \\ 1.15 $
Anilinium ion	4.6	$\begin{array}{c} C_{6}H_{5}\overset{+}{N}H_{3}\\ 0\\ \parallel\end{array}$	C ₆ H₅NH₂ O ∥	22.4
Acetic acid	4.7	CH ₃ COH	CH_3CO^-	1.15; 19.4
Pyridinium ion	5.2	+ H	Ň	1.14; 22.4

Acid		р <i>К</i> а	Formula	Conjugate base	Discussed in section
Carbonic acid		6.4	H ₂ CO ₃	HCO ₃ -	19.9
lydrogen sulf	ide	7.0	H ₂ S	HS	15.13
2,4-Pentaned Hydrogen cyar		9 9.1	CH ₃ ĈCH ₂ ĈCH ₃ HCN	CH₃CĊHCCH₃ CN [−]	18.1
Ammonium io		9.3	NH4 ⁺	NH ₃	1.14; 22.4
			0 +	0 	
Blycine		9.6	$H_3 NCH_2 CO^-$	$H_2NCH_2CO^-$	27.3
henol		10	C ₆ H ₅ OH	$C_{6}H_{5}O^{-}$	1.16; 24.4
lydrogen carb /lethanethiol	oonate ion	10.2 10.7	HCO ₃ ⁻	CO ₃ ²⁻	19.9 15.13
Dimethylamm	onium ion	10.7	CH_3SH_+ $(CH_3)_2NH_2$	CH ₃ S ⁻ (CH ₃) ₂ NH	22.4
Jinietnyianin		10.7			22.1
Ethyl acetoace	etate	11	∥ ∥ CH ₃ CC <mark>H</mark> ₂COCH₂CH ₃	∥_ ∥ CH ₃ CCHCOCH₂CH ₃	21.1
2			0 0		
Diethyl malon	ate	13	CH ₃ CH ₂ OCCH ₂ COCH ₂ CH ₃	CH ₃ CH ₂ OCCHCOCH ₂ CH ₃	21.8
Nethanol		15.2	CH ₃ OH	CH ₃ O ⁻	1.15
			O II	O II	
2-Methylpropa	anal	15.5	(CH ₃) ₂ CHĊH	(CH ₃) ₂ <u>Ċ</u> ĊH	18.1
Vater*		15.7	H_2O		1.15
Ethanol		16	CH ₃ CH ₂ OH H H	CH ₃ CH ₂ O [−] H H	1.15
Cyclopentadie	ne	16	Н	H H	11.22
			НН	H	
sopropyl alco	hol	17	(CH ₃) ₂ CHOH	(CH ₃) ₂ CHO ⁻	1.15
<i>ert</i> -Butyl alco		18	(CH ₃) ₃ COH	(CH ₃) ₃ CO ⁻	1.15
			0	0	
Acetone		19	∥ CH ₃ CCH ₃	[∥] _ CH ₃ CCH ₂	18.1
locione		19	0	0	10.1
Ethyl acetate		24	∥ CH ₃ COCH ₂ CH ₃	H₂CCOCH₂CH₃	21.1
Acetylene		26	HC=CH	HC≡C: [−]	9.5
Ammonia		36	NH ₃	H_2N^-	1.15
Diisopropylam	ine	36	[(CH ₃) ₂ CH] ₂ NH	[(CH ₃) ₂ CH] ₂ N ⁻	18.1
			Н	H H	
Benzene		43			14.5
			H	H	-
			н Н	H ₋ H	
thylene		45	$H_2C = CH_2$	H₂C≕ĊH	9.4; 9.5
Vethane		60	CH ₄	:ĒН _{3.}	1.15; 14.5
Ethane		62	CH ₃ CH ₃	CH ₃ ĊH ₂	14.5

Web collections of pKa data include those of H. Reich (University of Wisconsin) at http://www.chem.wisc.edu/areas/reich/pkatable/kacont.htm and D. Ripin and D. A. Evans (Harvard) at http://daecr1.harvard.edu/pka/pka.html.

*For acid–base reactions in which water is the solvent, the pK_a of H_3O^+ is zero and the pK_a of H_2O is 14.