Worked Solutions to Problems

1. Water
A. Phase diagram
a. The three phases of water coexist in equilibrium at a unique temperature and

pressure (called the triple point):

Ty = 273.16 K=0.01°C Py = 6.11 x 107 bar

b. If pressure decreases, boiling point decreases, but melting point increases
(slightly).

C. Beyond this point, there is no distinction between liquid and vapour phases of

water. Put alternatively, it is possible to have liquid to vapour transition by a
continuous path going around the critical point. (In contrast, solid-liquid

transition is discontinuous.)

d. T=300K, P =12.0bar:liquid phase
T=270K, P =1.00bar : solid phase

e. Below P = 6.11 x 1072 bar, ice heated isobarically will sublimate to vapour.
f. If X, and x, are the mole fractions of water in liquid and vapour phases,
V o= x,Vi+x, Vv = xV + [1-x)V
O X, = Vo =V 46 x 10"
Vv =V,
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B. Clausius — Clapeyron equation
a P _ AH
dT  TAV
AH = molar enthalpy change in phase transition

AV

molar change in volume in phase transition.

For ice-liquid water transition :

AH >0 AV < 0, sinceiceislessdense than water.
| d—P <
dT

Since ‘AV‘ is not large, the P-T curve for this transition is steep, with a
negative slope. Thus decrease of pressure increases the melting point

slightly.

For liquid water - vapour transition

AH > 0 AV< 0
] d—P>0
dT

Decrease of pressure decreases the boiling point.

b. Clausius - Clapeyron equation for (solid) liquid - vapour transition is
dP P AHw
dT RT?

This equation follows from the Clapeyron equation under the assumptions:
1. Vapour follows ideal gas law.

2. Molar volume of the condensed phase is negligible compared to molar

volume of vapour phase.

3. If further AH., is assumed to be constant (no variation with T), the eq.

is integrated to give

P MHep 01 1
In-2 = 2. ——
Pl R 1 T2




Here P;=1.01 bar, T = 373.15K
T,=393.15K ARy, = 40.66 kJ mol™
R =8.31JK™* mol*

O P,=2.01 bar

The estimate is based on assumptions 1, 2 and 3.
C. For ice - liquid water equilibrium, use Clapeyron equation

AtT: = 273.15K, P;=1.01 bar

1. Assume that for a small change in T, A—E is constant.
AV

Integrating the Clapeyron equation above

L
1

T, = 272.95K,  AHuson = 6008 Jmol™

av = HL 1 Hy18015 = -1.63 x 10° m*mol™
.00 09170

Pz - P1 = 27.0 bar

P, = 28.0 bar

The estimate is based on assumption 1.
C. Irreversible condensation

a. On the P-T plane, this equilibrium state is a solid phase (ice). Water in liquid
phase at this temperature and pressure is not an equilibrium state - it is a

supercooled state that does not lie on the given P-T plane.

b. Treating the metastable state as equilibrium state, we can go from the
supercooled liquid state to the solid state at the same temperature and

pressure by a sequence of 3 reversible steps.
1. Supercooled liquid at -12.0°C to liquid at 0°C

g1 = number of moles X Co (liquid water) x change of temperature




28.5¢
18.015 gmol™

X 76.1JK™"mol™ x 12.0K=1445]

2. liquid at 0°C to ice at 0°C

0. = 28.5gx(-333.5)Jg™* = -9505J

3. Ice at 0°C to ice at-12.0°C

gs = number of moles x Co (liquid water) x change of temp.
= 18_01258;'10'_1 X 37.15JK™"mol™ x (-12.0K)
= -705.3J
. g = 01+ Q2 + Qs =-8765J

Since all the steps are at the constant pressure of 1.00 bar,
g = AH
But AH is independent of the path, i.e., it depends only on the end points.

Thus for the irreversible condensation of supercooled liquid to ice
g = AH = -8765J
C. The actual irreversible path between the two end states of the system is

replaced by the sequence of three reversible steps, as above. For each

reversible step, AS can be calculated.

= o
ASlzn&dT:nCp In L
1 Tl

As, = 2820 751 3ktmolt x In2323

18.015 gmol 261.15

=541JK*




AH - 9505 .
AS, = 2 = = -34.79JK™
T 273.15
As, = — 2829 3715 3 Kimolt In 2oH1
18.015 gmol 273.15
=-2.64JK*
ASygem = AS, + AS, + AS, = -32.02J K™
ps, = Jw - 8765 33.56 JK*
Tour 261.15
ASuniv = ASsys’(em + Assur = 154JK_1

The entropy of the universe increases in the irreversible process, as expected

by the Second Law of Thermodynamics.
2. van der Waals gases

a. For a van der Waals gas

PV bP na n’ab
=1+ +

nRT RT VRT VRT

The ratio of the magnitudes of the second and third terms on the right side is :

b PV = b RT, taking PV = nRT up to zeroth order.

na a

The ratio of the magnitudes of the fourth and third terms on the right side is :
b bP
\% RT

I From the ratios above, it follows that at sufficiently high temperature for
any given pressure, the second term dominates the third and fourth

terms. Therefore,

ZD1+b—P>1
RT

For small P, Z nearly equals unity.




ii. At lower temperatures, the third term can be greater (in magnitude)
than the second term. It may be greater (in magnitude) than the fourth
term also, provided P is not too large. Since the third term has a

negative sign, this implies that Z can be less than unity.

iil. Fora=20

bP
+

Z = 1+ —
RT

which shows that Z increases linearly with P.

b. Helium has negligible value of a. Graph (1) corresponds to He and (2)

corresponds to Na.

C. Above T > T, only one phase (the gaseous phase) exists, that is the cubic

equation in V has only one real root. Thus isotherm (2) correspondsto T < T¢.

d. AtT = T, the three roots coincide at V = V. This is an inflexion point.
L I i
av ly, dv? v
The first condition gives
RT, 2na
z = 3 1)

(V. —nb) V,
The second condition gives

RT, _3na 2)

(V.-nb®  Vv*

Cc

These equations give

V.=3nb and T, = 8a
27bR
ForHe, T, = 5.2K

ForN, To = 128K

Since, T¢ (Ny) is greater than T, (He), N is liquefied more readily than He.




=56.7 L bar mol™?

3. Rates and reaction mechanisms

a. Mechanism 1 :
1d[HI] 2
=== k12 H
> NURGH

Since the first step is fast, there is a pre - equilibrium:
_
[l.]

% = 2K, K [I,][H,] = K[H,][1,]

Mechanism 2 :

1d[H] _
ET - k2 [I2]d[H2]
K= Ll
[I.]
d[HI] _ - _
g = 2k K LIH] = KH,I0]

Both mechanisms are consistent with the observed rate law.
b. I. k = Ae_E%T
EaETi —AE: R Ink—2
1 T2 kl
With the given numerical values,

E, =170 kJ mol™1




ii. The activation energy is greater than the bond dissociation energy of
l,. Hence the second step is rate determining in both the mechanisms.
C. The activation energy E, for the reverse reaction is

E, =E, -AU

=170 + 8.2=178.2 kJ mol~L

d. i
dfl,] _
oo = Ko lAI
K' = [IAr][Azr]
[1[A]
dil,] _ " e
d el K K [I]” [Ar]

=k [IJ? [Ar]

A possible reason why this is negative is that Eas is positive and less in
magnitude than [AH°[] while AH® is negative.

k =k,K
=Ae Ea% e_m%T
we know AGO :AHO -TA SO
AS"  (Egp+AH)
Ok=A;eR e i KT

The activation energy for the overallreactionis E_; + A H’

4. Enzyme catalysis

a. i The differential rate equations for the Michaelis-Menten mechanism are
d[ES .
S i) -k [ES] -k, ES) ®
d[P
_[t] =k, [ES] (2)




In the steady-state approximation, d[ES] _ 3)
dt
Eq. (1) then gives [ES] = @ (4)
Kk, +K,
Now [E], =[E] +[ES] ()

where [E]o is the total enzyme concentration. Eqgs. (4) and (5) gives

El [S
K +[S]
where K, = kil:'kz is the Michaelis-Menten constant.
From eq. (2), d(P] _ k2 [Elo [S] (7)

dt Ky +[S]

Since the backward rate is ignored, our analysis applies to the initial rate of
formation of P and not close to equilibrium. Further, since the enzyme
concentration is generally much smaller than the substrate concentration, [S]

is nearly equal to [S]o in the initial stage of the reaction.

Thus, according to the Michaelis-Menten mechanism, the initial rate versus

substrate concentration is described by eq. (7), where [S] is replaced by [S]o.
For [S] << K,
- K,
Initialrate = K_[E]° [S] (8)
i.e., initial rate varies linearly with [S].
For [S] >> K,

Initial rate = kz [E]o (9)

i.e., for large substrate concentration, initial rate approaches a constant

value k2 [E]o.

Thus the indicated features of the graph are consistent with Michaelis-Menten

mechanism.




ii. The asymptotic value of initial rate is kz [E]o
From the graph,
ko[Elo = 3.0x10°Ms™
With [Elo = 1.5x107° M
we get k; =2.0x10° s

iii. From eq. (7), for [S] = Ky, the initial rate is half the asymptotic value.

From the graph, therefore,
Km = 5.0x107°M
For[S] = 1.0x10™M, using eq. (7) again,

nitial rate = [2.0 x10%s™] x[1.5x10° M] x [1.0x10™*]M
[5.0 x 10°]M+[1.0x107*]M

=20 x 10°M s

k| +k,

1

iv.  Wehave K, = = 50 x10°M

The enzyme equilibrates with the substrate quickly, that is the first step
of equilibration between E, S and [ES] is very fast. This means that k'1

is much greater than ko. Therefore, neglecting k, above,

|
K = 50 x 10°M
kl
The equilibrium constant K for the formation of ES from E and S is,
K K 2.0 x 107
1M k!

b. From the graph at the new temperature, kz [E]o = 6.0 x 10° M s™

-6 -1
e, k= SOXIOMS _6y10°s

1.5 x 10°M




Using Arrhenius relation for temperature dependence of rate constant :
k = Aefr (10)

where E, is the molar activation energy.

E,H1_ 10
kM) _ "y b
k(T)
nK(T)
ie. . = r— <) (11)
S
1 T2
k,(310)
= 2.0 = -1 -1
Now ,(285) : R 8.31 J K™ mol
O Ea = 20.4 kJ mol™
C. I. The fraction of the enzyme that binds with the substrate is, from eq.
(6):
[ES] _ [S] (12)

[Elo Kq + [S]
where [S] is nearly equal to [S]o in the initial stage of the reaction.
3.0 x 10° mol

Now [S], = T x 1070 = 3.0 x10°M
X

and Kn = 5.0x10°M

[ES] _ 3.0 x 10°M

= = 0.98
[El, (5.0 x 10° + 3.0 x 10°)M

Nearly the whole of the enzyme is bound with the substrate.

ii. From eq. (7),

Integrating the equation gives,

dis] _ _ k,[EL[S]

dt K, + [S]




K InL 4 [s] - s, = -k, [E],t (13)
[S],
Ifat t =T, [S] = 1/2[S],,
1
Tk,El, = K, In2 + > [S], (14)
-12
Here [E], 2.0 x 10 ~ mol 2.0 x 10°M
1.0 x 107°L
k, = 2.0x10°s™, Km = 5.0x10°M,

[Slo = 3.0x107°M
Substituting these values in eq. (14) gives
T = 384s

Thus 50% of the antibiotic dose is inactivated in 384 s.

d. I. The differential rate equations for the situation are :
%[ES] = k,[E][S] - K/[ES] - k, [ES] (15)
d _ |
a[E|] = k, [E]N - k. [EN (16)
E[P] = k, [ES] (17)
-~ 7

where ks and K, are the forward and backward rate constants for the

enzyme-inhibitor reaction.

Applying steady-state approximation to [ES] and [EI],

18
[ES] = ll((ll [E] [kS] (18)
and [El] = w (19)

Now [E]lo = [E] + [ES] + [El] (20)




Eliminating [E] and [EI] from egs. (18) to (20) gives :

£ - [E], [S] | o
] + K. §+ (] E
K, (1M)

dp]  _ k, [E], [S] o
dt [S]+Km§+ (] E
K, (1M)

kl
Here, K/(1M)= k—3 is the equilibrium constant for the dissociation of El

3
to E and I.

The degree of inhibitionis i = 1 -

Kn (I
K (M)
+ K,

Using eq. (22), I = (23)
[1]
[S] +
K, (1M)
For fixed [I], i decreases with increase in [S] (competitive inhibition).
and forlarge [S], | - 0, i.e.,theinhibitor ceases to play any role.
' . []
ii. Forsmall[S] | = — 1
K, (IM) + [I]
if r = 1 r i = 3
4 ° 4
e, [l = 3K x AM) = 15x10*M

The inhibitor concentration required to reduce the rate of inactivation by

a factor of 4 is 1.5 x 10™ M; i.e., 0.15 pmol in a volume of 1.00 mL.




5. Schrodinger equation

I One-dimensional Schrodinger equation for a free particle of mass m:

n? diy h
-— T = E h=—
2m  dx? ¥ 217

where E stands for the energy of the particle and y its wave function.
i. The boundary conditions are :

p O = pL)=0

Nt X

Only wy,(x) = sin satisfies the required boundary conditions.

Other functions are not possible wave functions of the electron in a
one-dimensional rigid box.

2 d® . nmx h2r? 2 . NITX
-— —— sin = n< sin ——
2m gx2 L 2mL2 L
h2m? 2 hn?
O E, = FN° = 5
2mL 8mL
V. Ground state (n = 1)
P1(x)
W, (X) = sin mX 0 L
X
First excited state (n = 2) Pa(x)
21T X 0 X L
W,(x) = sin L/2
Pa(x) X
Second excited state (n = 3) 0 I/L-IB\\./ZLIB L
W,(x) = sin 21X

Number of nodes in y, = n -1, apart from the nodes at the end
points.




V.
W) = Nsin"L—X
o 2
— N
1 J"Lpl (x)‘ dx
L 2 L
=N? J’sinzﬂdx = N—IB].—COSZWXHdX
L 2 JO L O
0 0
= NZE
2
2 :
O N = T (Nis chosen to be real )
/2 . TIX
b. In the example

L=5x1.4x10"m =7.0 x10™m
The first three energy levels are:
h2

E, = —_ =122x10"%J
1 gmL?

E, = 4E; = 4.88x107°J

E;s = 9E; = 10.98x107%9]

In the ground state, the four electrons will occupy the levels E; and E,, each
with two electrons.

Es Q Es
ja) /) E> O Ez
A\ A\
ja) /a) E: N Ja) E;
A\ A\ \ N\

Ground state Lowest excited state




The lowest excitation energy

Es—E,=6.10x107%9]

C. The condition that () is single valued demands that
Y( = Y(p+2m
ei)\(p - ei)\(qﬂ-Zn)

ei 2T\ =1
i.e. A=m,where m=0, 1, £2, +3,.......
This shows that angular momentum projection (L;) cannot be an arbitrary real

number but can have only discrete values: mi, where m is a positive or
negative integer (including zero).

6. Atomic and molecular orbitals

A. Atomic orbitals

a. o
" p, = Ne
2

1 = J’\Lpg‘s dv = 4mal N?

3
a
=41 N? XTO = malN? (N chosen to be real)

1

O N = [ﬂag]_2

1 -
ol = [ragfze

i. Probability of finding an electron between r and r + dr

2r
-1 e
= 4mr? X [Trag] e 20 dr

This is a maximum atr = rmax , given by

_2r
dézeao = 0




This gives
fmax = Qo

The 1s electron is most likely to be found in the neighborhood of r = ao.

b. W =0 at r = 2a0

Nodal surface is a sphere of radius 2ay

i
L|J2pZ:0 ate:E

Nodal surface is the xy plane.

. _ 1
Way , = O at 3cos?6-1 = 0, ie, 8 = cos™tDr—p
3d22 0 /3[

Nodal surfaces are cones with these values of half-angle, one above the xy
plane and the other below it.

(Note: all three wave functions vanish as r — . Atr = 0, s does not vanish,
but the other two wave functions vanish.)

C. Each electron in n = 1 shell of helium atom has energy - Z% x 13.6 eV
Helium ground state energy = — Z% x 27.2 eV
Energy of He" ground state = -4 x13.6 = —54.4eV
lonization energy = (- 54.4 + 2% x 27.2) eV = 24.46 eV

This gives Zeir = 1.70

B. Molecular orbitals

a. Y, and Y, are bonding orbitals

@, and g, are antibonding orbitals

Bonding orbital

No nodal surface between the nuclei. Electronic energy has a minimum at a
certain internuclear distance. Qualitative reason: electron has considerable
probability of being between the nuclei and thus has attractive potential

energy due to both the nuclei.




Antibonding orbital
Nodal surface between the nuclei. Electronic energy decreases monotonically

with internuclear distance. Hence bound state is not possible.

b. Re=1.32x10"%m
D=-1.36 - (-15.36) = 1.76 eV

C. It will dissociate to a hydrogen atom in 2s state and a bare hydrogen nucleus
(proton).
d. The two electrons occupy the same molecular orbital with the lowest energy.

By Pauli’s principle, their spins must be antiparallel. Hence the total electronic

spin is zero.

e. In the first excited state of H, one electron is in 1 (bonding orbital) and the

other in ) (antibonding orbital). It will dissociate into two hydrogen atoms.

f. Using the aufbau principle, in the ground state two electrons of He;, are in
(bonding orbital) and two in 1 (antibonding orbital). The bond order is
% (2-2) = 0
Therefore, bound He; is unstable and difficult to detect. However, if one or
more electrons are elevated from the antibonding orbital to (higher energy)
bonding orbitals, the bond order becomes greater than zero. This is why it is

possible to observe He; in excited states.

7. Fission

235 94 140
U +n - 3Sr + 5 Xe + 2n

235

U +n o '2Ba + 2Kr + 3n

b. The net nuclear reaction is

U+ n o 2Zr + 'WCe + 2n + 6 + (Q)
The energy released is
Q = [m (*U) = m (*2r) - m (*Ce) = m, - 6m,] c?




