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Worked Solutions to Problems

1.   Water

A. Phase diagram

a. The three phases of water coexist in equilibrium at a unique temperature and

pressure (called the triple point):

Ttr   = 273.16 K = 0.01 °C Ptr   = 6.11 x 10−3 bar

b. If pressure decreases, boiling point decreases, but melting point increases

(slightly).

c. Beyond this point, there is no distinction between liquid and vapour phases of

water. Put alternatively, it is possible to have liquid to vapour transition by a

continuous path going around the critical point. (In contrast, solid-liquid

transition is discontinuous.)

d. T = 300K, P = 12.0 bar : liquid phase

 T = 270K, P = 1.00 bar : solid phase

e. Below P = 6.11 x 10−3 bar, ice heated isobarically will sublimate to vapour.

f. If xl and xv are the mole fractions of water in liquid and vapour phases,

( )

0.860       0.14       1         
V
V

      0.140         
V
V x

         
V
V

10  x  4.6     
V      V

   V   V
            x

  V x1     V     x      V   x  V    xV    

v

lll

1

lv

v

l

vlllvvll

=−=

==

=
−
−=∴

−+=+=

−

  

  



52

33rd International Chemistry Olympiad ∗ Preparatory Problems

Mumbai, India, July 200152

B. Clausius – Clapeyron equation

a.

=  molar enthalpy change in phase transition

=  molar change in volume in phase transition.

For ice-liquid water transition :

Since           is not large, the P-T curve for this transition is steep, with a

negative slope. Thus decrease of pressure increases the melting point

slightly.

For liquid water - vapour transition

Decrease of pressure decreases the boiling point.

b. Clausius - Clapeyron equation for (solid) liquid - vapour transition is

This equation follows from the Clapeyron equation under the assumptions:

1. Vapour follows ideal gas law.

2. Molar volume of the condensed phase is negligible compared to molar

volume of vapour phase.

3. If further           is assumed to be constant (no variation with T), the eq.

is integrated to give
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 Here P1 = 1.01 bar , T1   =   373.15 K

T2 = 393.15 K =   40.66 kJ mol−1

R  = 8.31 J K−1  mol-1

∴ P2 = 2.01 bar

The estimate is based on assumptions 1, 2 and 3.

c. For ice - liquid water equilibrium, use Clapeyron equation

At T1  =  273.15 K, P1 = 1.01 bar

1. Assume that for a small change in T,           is constant.

Integrating the Clapeyron equation above

T2   = 272.95 K, 

P2  −  P1 =     27.0 bar

P2   =  28.0 bar

The estimate is based on assumption 1.

C. Irreversible condensation

a. On the P-T plane, this equilibrium state is a solid phase (ice). Water in liquid

phase at this temperature and pressure is not an equilibrium state - it is a

supercooled state that does not lie on the given P-T plane.

b. Treating the metastable state as equilibrium state, we can go from the

supercooled liquid state to the solid state at the same temperature and

pressure by a sequence of 3 reversible steps.

1. Supercooled liquid at -12.0°C to liquid at 0°C

q1  =  number of moles  x       (liquid water)  x  change of temperature
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2.  liquid at 0°C to ice at 0°C

q2  = 28.5 g x (−333.5) J g−1  =  − 9505 J

3.  Ice at 0°C to ice at −12.0°C

q3  =  number of moles  x        (liquid water) x  change of temp.

=    − 705.3 J

∴      q =   q1  +   q2   +  q3   = − 8765 J

Since all the steps are at the constant pressure of 1.00 bar,

But ∆H is independent of the path, i.e., it depends only on the end points.

Thus for the irreversible condensation of supercooled liquid to ice

q    =     ∆H =  −8765 J

c. The actual irreversible path between the two end states of the system is

replaced by the sequence of three reversible steps, as above. For each

reversible step, ∆S can be calculated.
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         = − 2.64 J K−1

The entropy of the universe increases in the irreversible process, as expected

by the Second Law of Thermodynamics.

2.   van der Waals gases

a. For a van der Waals gas

The ratio of the magnitudes of the second and third terms on the right side is :

The ratio of the magnitudes of the fourth and third terms on the right side is :

i. From the ratios above, it follows that at sufficiently high temperature for

any given pressure, the second term dominates the third and fourth

terms. Therefore,

For small P, Z nearly equals unity.
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ii. At lower temperatures, the third term can be greater (in magnitude)

than the second term. It may be greater  (in magnitude) than the fourth

term also, provided P is not too large. Since the third term has a

negative sign, this implies that Z can be less than unity.

iii. For a = 0

 which shows that Z increases linearly with P.

b. Helium has negligible value of a. Graph (1) corresponds to He and (2)

corresponds to N2.

c. Above T > Tc, only one phase (the gaseous phase) exists, that is the cubic

equation in V has only one real root. Thus isotherm (2) corresponds to T < Tc .

d. At T   =   Tc , the three roots coincide at V = Vc  This is an inflexion point.

Since, Tc (N2) is greater than Tc (He),  N2 is liquefied more readily than He.
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3. Rates and reaction mechanisms

a. Mechanism 1 :

Mechanism 2 :

Both mechanisms are consistent with the observed rate law.

b. i.
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ii.  The activation energy is greater than the bond dissociation energy of

I2. Hence the second step is rate determining in both the mechanisms.

c. The activation energy Ea
’ for the reverse reaction is 

d.  i.

ii.  A possible reason why this is negative is that Ea3 is positive and less in

magnitude than ∆H°, while ∆Ho is negative.

4.   Enzyme catalysis

a. i. The differential rate equations for the Michaelis-Menten mechanism are
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(3)                                    0    
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=
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In the steady-state approximation,

Eq. (1) then gives                                      (4)

Now

where [E]0 is the total enzyme concentration. Eqs. (4) and (5) gives

    (6)

where                     is the Michaelis-Menten constant.

From eq. (2),                (7)

Since the backward rate is ignored, our analysis applies to the initial rate of

formation of P and not close to equilibrium. Further, since the enzyme

concentration is generally much smaller than the substrate concentration, [S]

is nearly equal to [S]0 in the initial stage of the reaction.

Thus, according to the Michaelis-Menten mechanism, the initial rate versus

substrate concentration is described by eq. (7), where [S] is replaced by [S]0.

 For [S] << Km,

(8)

i.e., initial rate varies linearly with [S].

For [S] >> Km,

Initial rate   =  k2 [E]0 (9)

i.e., for large substrate concentration,  initial  rate  approaches a constant

value k2 [E]0.

Thus the indicated features of the graph are consistent with Michaelis-Menten

mechanism.
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ii. The asymptotic value of initial rate is k2 [E]0

From the graph,

k2 [E]0   =   3.0 x 10-6 M s−1

With [E]0    =   1.5 x 10−9 M

we get  k2   = 2.0 x 103  s−1

iii. From eq. (7),  for [S] = Km, the initial rate is half the asymptotic value.

From the graph, therefore,

Km   =    5.0 x 10−5 M

For [S]  =   1.0 x 10−4 M,    using eq. (7) again, 

iv.    We have =  5.0  x 10−5 M

The enzyme equilibrates with the substrate quickly, that is the first step

of equilibration between E, S and [ES] is very fast. This means that

is much greater than k2. Therefore, neglecting k2 above,

The equilibrium constant K for the formation of ES from E and S is,

b. From the graph at the new temperature, k2 [E]0 = 6.0 x 10−6 M s−1
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Using Arrhenius relation for temperature dependence of rate constant :

           (10)

where Ea is the molar activation energy.

i.e. (11)

Now     , R   =  8.31 J K−1 mol−1

∴ Ea   =  20.4  kJ mol−1

c. i.  The fraction of the  enzyme  that  binds with  the substrate  is, from eq.

(6):

(12)

where [S] is nearly equal to [S]0 in the initial stage of the reaction.

Now

and    Km  = 5.0 x 10−5 M

Nearly the whole of the enzyme is bound with the substrate.

ii. From eq. (7),

Integrating the equation gives,
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            (13)

If at   t  =  T, [S]   =  1/2[S]0,

(14)

Here

k2    =    2.0 x 103 s−1, Km   =   5.0 x 10−5 M,

[S]0   =   3.0 x 10−3 M

Substituting these values in eq. (14) gives

T   =   384 s

Thus 50% of the antibiotic dose is inactivated in 384 s.

d. i.  The differential rate equations for the situation are :

(15)

(16)

(17)

where k3 and         are the forward and backward rate constants for the

enzyme-inhibitor reaction.

Applying steady-state approximation to [ES] and [EI],

(18)

and   (19)

Now     [E]0 =    [E]   +   [ES]   +   [EI] (20)
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Eliminating [E] and [EI] from eqs. (18) to (20) gives :

(21)

(22)

Here,           is the equilibrium constant for the dissociation of EI

to E and I.

The degree of inhibition is

Using eq. (22), (23)

For fixed [I],   i     decreases with increase in [S] (competitive inhibition).

and for large [S],     i  →  0,    i.e., the inhibitor ceases to play any role.

ii.  For small [S]

If

i.e., [I]     =     3 KI  x   (1M)    =     1.5 x 10−4 M

The inhibitor concentration required to reduce the rate of inactivation by

a factor of 4 is 1.5 x 10−4 M; i.e., 0.15 µmol in a volume of 1.00 mL.
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n%

5. Schrödinger equation

a. 
i. One-dimensional Schrödinger equation for a free particle of mass m:

where E stands for the energy of the particle and ψ its wave function.

ii. The boundary conditions are :

ψ (0)  =   ψ(L) = 0

        satisfies the required boundary conditions.

Other functions are not possible wave functions of the electron in a
one-dimensional rigid box.

iii. 

iv. Ground state (n = 1)

First excited state (n = 2)

Second excited state (n = 3)

Number of nodes in = n −1, apart from the nodes at the end
points.
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v. 

b. In the example

L = 5 × 1.4 × 10−10  m   = 7.0  × 10−10 m

       The first three energy levels are:

E2     =    4 E1    =    4.88 × 10 −19 J

E3    =    9 E1     =  10.98 × 10 −19 J

In the ground state, the four electrons will occupy the levels E1 and E2, each
with two electrons.
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The lowest excitation energy

E3 – E2 = 6.10 × 10 –19 J

c. The condition that  ψ(φ) is single valued demands that
            

     (φ)  =     (φ + 2π)

eiλφ = eiλ(φ+2π)

        ei 2πλ =1

        i.e.   λ =m, where m = 0, ±1, ±2, ±3,…….

This shows that angular momentum projection (Lz) cannot be an arbitrary real
number but can have only discrete values: m!, where m is a positive or
negative integer (including zero).

6.   Atomic and molecular orbitals

A.  Atomic orbitals

a.
i. 

ii. Probability of finding an electron between r and r + dr

          This is a maximum at r =  rmax  , given by
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2s%

         This gives
                      rmax   =  a0    

          The 1s electron is most likely to be found in the neighborhood of r = a0.

b.  = 0      at  r  =   2a0

  Nodal surface is a sphere of radius 2a0

 Nodal surface is the xy plane.

 

Nodal surfaces are cones with these values of half-angle, one above the xy
plane and the other below it.

       (Note: all three wave functions vanish as r → ∞. At r = 0, ψls does not vanish,
but the other two wave functions vanish.)

c. Each electron in n = 1 shell of helium atom has energy  − Z2
eff × 13.6 eV

Helium ground state energy  =  −  Z2
eff  × 27.2 eV

Energy of He+ ground state  =  − 4 × 13.6  =  − 54.4 eV

Ionization energy  =  (− 54.4 + Z2
eff × 27.2) eV  =  24.46 eV

This gives Zeff   =  1.70

B. Molecular orbitals

a.      and       are bonding orbitals

     and        are  antibonding orbitals

Bonding orbital

No nodal surface between the nuclei. Electronic energy has a minimum at a

certain internuclear distance. Qualitative reason: electron has considerable

probability of being between the nuclei and thus has attractive potential

energy due to both the nuclei.

2
�

    �  at           0   %
z2p ==






±==−= −

3

1
 cos      �  i.e.,        0,      1  �3cos  at         0   %
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Antibonding orbital

Nodal surface between the nuclei. Electronic energy decreases monotonically

with internuclear distance. Hence bound state is not possible.

b. Re = 1.32 × 10−10 m

        D = −1.36 – (−15.36) = 1.76 eV

c. It will dissociate to a hydrogen atom in 2s state and a bare hydrogen nucleus

(proton).

d. The two electrons occupy the same molecular orbital with the lowest energy.

By Pauli’s principle, their spins must be antiparallel. Hence the total electronic

spin is zero.

e. In the first excited state of H2, one electron is in ψ1 (bonding orbital) and the

other in  ψ1 (antibonding orbital). It will dissociate into two hydrogen atoms.

f. Using the aufbau principle, in the ground state two electrons of He2 are in ψ1

(bonding orbital) and two in ψ1 (antibonding orbital). The bond order is

 ½  (2 −2)  =  0

Therefore, bound He2 is unstable and difficult to detect. However, if one or

more electrons are elevated from the antibonding orbital to (higher energy)

bonding orbitals, the bond order becomes greater than zero. This is why it is

possible to observe He2 in excited states.

7. Fission

a. 

b.   The net nuclear reaction is

3n       Kr        Ba        n       U

2n        Xe        Sr         n    U

92
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235
92

++→+

++→+
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c  ]6m  m    Ce)(m     Zr)(m     U)(  [m      Q

 is  releasedenergy  The

(Q)      6e      2n      Ce      Zr          n     U
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