Giochi della Chimica 2003 Problemi a risposta aperta

Cerca di risolvere il maggior numero di esercizi. Saranno valutate anche risposte parziali e non si daranno penalità per gli eventuali errori come alle Olimpiadi della Chimica. Non mollare!

Radiochimica

1. Una roccia contiene 0,257 mg di ²⁰⁶Pb per ogni mg di ²³⁸U. Il periodo di semivita del nuclide isotopo ²³⁸U per dare ²⁰⁶Pb è di 4,5 10⁹ anni. Calcola l'età della roccia.

Chimica Generale

2. Sapendo che il gas N₂O₄ si dissocia secondo l'equazione:

$$N_2O_4(g) => 2 NO_2(g)$$

Calcolare il grado di dissociazione e le pressioni parziali di N_2O_4 e NO_2 per un sistema in cui una massa definita di N_2O_4 (0,858 g) posta in un volume di 0,800 L esercita, ad equilibrio raggiunto, una pressione di 0,590 atm alla temperatura di 70,5 °C.

3. Calcolare la concentrazione degli ioni Ba^{2+} , Sr^{2+} , e SO_4^{2-} in una soluzione acquosa che a 25 °C è contemporaneamente satura di $BaSO_4$ e di $SrSO_4$, sapendo che, alla stessa temperatura, si ha K_{PS} ($BaSO_4$) = 1,08 10^{-10} e K_{PS} ($SrSO_4$) = 3,81 10^{-7} .

Elettrochimica

4. Una cella a concentrazione è costituita da una semicella in cui un elettrodo di Pt è immerso in una soluzione acquosa 1,00 M di HCl e da una seconda semicella in cui un elettrodo di Pt è immerso in una soluzione 1,00 M di CH₃COOH. Su entrambi gli elettrodi viene fatto gorgogliare H_2 alla pressione di 1 atm. Sapendo che alla stessa temperatura $K_a(CH_3COOH) = 1,76\ 10^{-5}$, calcolare la f.e.m. della cella e dire quale elettrodo funge da anodo.

Chimica Organica

5. Determinare la struttura dei composti **A-F** formati nella seguente sequenza sintetica:

Ho

OH

HBr

A
$$(C_3H_6Br_2)$$

NaOEt

2 moleq

CH₂(COOEt)₂

RaOEt

2 moleq

B LiAlH₄

C

NaOEt

2 moleq

F $(C_8H_{12}O_2)$

RaOEt

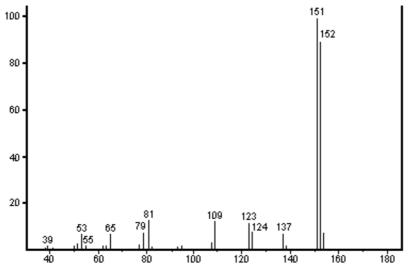
2 moleq

F $(C_8H_{12}O_2)$

6. Un composto \mathbf{A} , C_7H_{14} , è otticamente attivo. Per riduzione catalitica su Pd, \mathbf{A} assorbe una mole di H_2 per mole e forma \mathbf{B} , C_7H_{16} . Per ossidazione di \mathbf{A} con KMnO₄, acido a caldo, si ottengono due frammenti uno dei quali è acido acetico mentre l'altro è un acido carbossilico otticamente attivo. Formulare la reazione e proporre le strutture per \mathbf{A} , \mathbf{B} e \mathbf{C} .

Chimica fisica

7. Calcolare il ΔS° per la sintesi dell'ammoniaca da $N_{2(g)}$ e $H_{2(g)}$, conoscendo le seguenti entropie molari standard a 298 K: $N_{2(g)} = 191,5$ J mol $^{-1}$ K $^{-1}$; $H_{2(g)} = 130,6$ J mol $^{-1}$ K $^{-1}$; $NH_{3(g)} = 192,5$ J mol $^{-1}$ K $^{-1}$; $H_{2}O_{(g)} = 188,8$ J mol $^{-1}$ K $^{-1}$.


- **8.** Indicare il peso formula e il nome del cloruro di un metallo alcalino che cristallizza con reticolo cubico a facce centrate, considerando che il lato della sua cella elementare è di 5,632 10⁻⁸ cm e la densità è di 2,17 g cm⁻¹.
- **9.** Indicare il numero di ossidazione del metallo centrale in [Co(NH₃)₅Cl](NO₃)₂.

Chimica Analitica

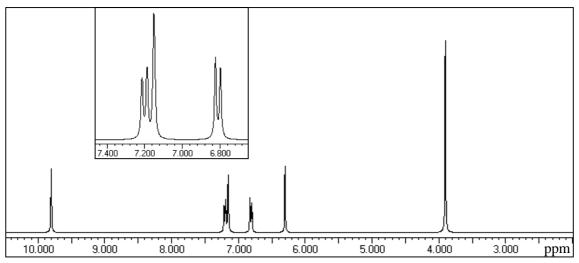
- 10. Un volume esattamente prelevato (50,0 mL) di una soluzione acquosa di perossido di idrogeno viene diluito a un volume noto (1,000L). Un campione di tale soluzione (50,0 mL) viene titolato in presenza di H_2SO_4 con una soluzione acquosa di $KMnO_4$ (18,2 mL; 0,02 M). Dalla reazione si forma O_2 e un sale di Mn(II). Calcolare la concentrazione di H_2O_2 nella soluzione originaria in g/L e il titolo in volumi.
- 11. Un'aliquota di una soluzione contenente Fe(II) e Fe(III) ha richiesto 13,73 mL di EDTA 0,01200 M, quando titolata a pH 2 e 29,62 mL quando titolata a pH 6. Esprimere la concentrazione della soluzione in termini di ppm di ciascun soluto.
- 12. Un composto naturale A contenente solo C, H e O ha la seguente composizione percentuale in massa:

C: 63,2 % H: 5,3 % O: 31,5 %

- 12.1 Determina la sua formula empirica
- 12.2 Determina la sua formula molecolare in base al seguente spettro di massa

12.3 Quando una soluzione di A in etere dietilico viene agitata con una soluzione acquosa di NaOH, nessuna traccia di A rimane nella fase eterea. Invece quando una seconda soluzione di A sempre in etere dietilico viene agitata con una soluzione acquosa di NaHCO₃, il composto A rimane nella fase eterea. Indica con una x la classe di composti a cui appartiene A in base al solo risultato delle prove effettuate.

....alcolfenoloaldeidechetoneacidoestereetere


12.4 Il composto A dà luogo alla formazione di uno specchio d'argento per reazione col reattivo di Tollens $[Ag(NH_3)_2^+]$. Questo risultato indica che nel composto A deve essere presente anche uno dei seguenti gruppi funzionali. Indicalo con una x.

.....Gruppo ossidrilico alcolicoGruppo ossidrilico fenolicoGruppo carbonilico chetonico

.....Gruppo carbossilicoGruppo estereo

.....Gruppo alcossi etereo

12.5 Qui di seguito è riportato lo spettro ¹H-NMR del composto A I segnali a 3,9; 6,3 e 9,8 ppm sono singoletti. Nel riquadro è riportato un ingrandimento della porzione dello spettro tra 6,5 e 7,4 ppm.

Il segnale a 6.3 ppm scompare se si aggiunge una goccia di acqua deuterata D_2O e si agita energicamente. Quale dei seguenti eventi è accaduto? Indicalo qui sotto con una x.

- Scambio di un atomo di H legato al carbonio
- Scambio di un atomo di H legato all'ossigeno
- Effetto di diluizione
- Idrolisi

12.6 Scrivere le possibili formule di struttura del composto A tenendo conto di tutte le informazioni finora avute e degli spostamenti chimici riportati nella seguente tabella

Idrogeni legati al carbonio		Spostamenti chimici ¹ HNMR δ (ppm)
Metile	CH ₃ -C-	0.9 - 1.6
	CH ₃ -CO-	2,0-2,4
	CH ₃ -O-R	3,3-3,8
	CH ₃ -O-CO-R	3,7-4,0
Metilene	-C H ₂ -C-	1,4-2,7
	-C H ₂ -CO-	2,2-2,9
	-C H ₂ -O-R	3,4-4,1
	-C H ₂ -O-CO-R	4,3 – 4,4
Metino	-СН-	1,5 – 5,0
	'	secondo i sostituenti.
		In genere maggiore di metile e
		metilene
Alchene		4,0 – 7,3
		secondo i sostituenti.
Aldeide	R-CHO	9,0 – 10,0
Idrogeni legati all'ossigeno		
Alcol	ROH	0,5-5,0
Fenolo	ArO H	4,0 – 7,0
Acido Carbossilico	RCOO H	10,0 – 13,0

12.7 Scrivere le possibili formule di struttura dei frammenti persi che giustificano la formazione dei picchi a 123 e 137 unità di massa nello spettro di massa dato

SCI – Società Chimica Italiana

Digitalizzato da:

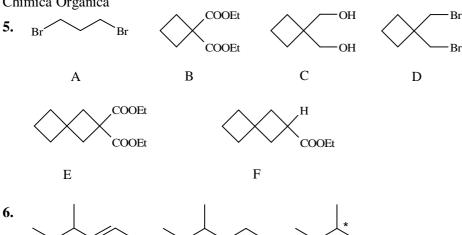
Prof. Mauro Tonellato – ITIS Natta – Padova

RISPOSTE:

Radiochimica

1. $1.7 \cdot 10^9$ anni

Chimica Generale


2. $\alpha = 0.796$; $p(N_2O_4) = 0.0670$ atm; $p(NO_2) = 0.523$ atm

3.
$$[Sr^{2+}] = [SO_4^{2-}] = 6.17 \cdot 10^{-4} \text{ M}; [Ba^{2+}] = 1.75 \cdot 10^{-7} \text{ M}$$

Elettrochimica

4. anodo è la semicella contenente acido acetico; E = 0.140 V

Chimica Organica

Chimica Fisica

7. $-99,15 \text{ J mol}^{-1} \text{ K}^{-1}$

A

- 8. NaCl
- **9.** +3

Chimica Analitica

10. 12,38 g/L; 4,08 vol

11.
$$Fe(EDTA)^{-} \Rightarrow Fe^{3+} + EDTA^{4-}$$
Concentrazione iniziale 0,10 0 0
Concentrazione finale 0,10 - x x x

В

$$\frac{x^2}{0.10} = K = 1.4 \cdot 10^{-23}$$
 a pH 8 $K = 2.3 \cdot 10^{-12}$ a pH 2

Calcolando il valore di x cioè di $[Fe^{3+}]$ otteniamo $[Fe^{3+}] = 1,2 \ 10^{-12}$ a pH 8,00 e $[Fe^{3+}] = 4,8 \ 10^{-7}$ a pH 2,00. Utilizzando la costante di formazione condizionale trattiamo l'EDTA dissociato come se fosse presente in un'unica specie.

C

12. 12.1-formula minima: C₈H₈O; 12.2-formula molecolare: C₈H₈O; 12.3-classe di composti: fenolo; 12.4-gruppo funzionale: carbonilico aldeidico; 12.5-scambio di un atomo di H legato all'ossigeno (fenolo); 12.6-Possibili isomeri:

SCI – Società Chimica Italiana

Digitalizzato da:

Prof. Mauro Tonellato – ITIS Natta – Padova