1) Which atom does not fit this electron configuration? $[\mathrm{Ne}] 3 s^{2} 3 p^{6}$
a. Ar
b. Cl^{-}
c. $\quad \mathrm{P}^{2+}$
d. Ca^{2+}
e. S^{2-}
2) How many photons are contained in a flash of violet light (440 nm) that contains 185 kJ of energy?
a. $\quad 5.27 \times 10^{23}$ photons
b. 6.35×10^{35} photons
c. 4.09×10^{23} photons
d. 4.52×10^{19} photons
e. 4.20×10^{10} photons
3) Assume that the electron of a hydrogen atom has been excited to $n=5$. As this excited atom relaxes back to ground state, how many different wavelengths of light emission are possible?
a. 1
b. 5
c. 8
d. 10
e. 4
4) Which of the following transitions of an electron (in a hydrogen atom) represents the longest emission wavelength photon?
a. $n=5$ to $n=4$
b. $n=3$ to $n=1$
c. $n=2$ to $n=1$
d. $n=3$ to $n=4$
e. $n=4$ to $n=1$
5) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5} 4 p^{1}$ is the electron configuration of an excited state of an element. What is its ground state configuration and what element is it?
a. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5} 4 p^{2}$, Co
b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}, M n$
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}, \mathrm{Fe}$
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{3} 3 d^{4}$, Fe
e. None of the above

Question 6-9 refer to the following compound below, streptonigrin. Streptonigrin is a natural product from Streptomyces flocculus.

6) How many hydrogens are capable of hydrogen bond donation?
a. 1
b. None
c. 3
d. 6
e. 4
7) How many atoms are capable of hydrogen bond acceptance?
a. 6
b. 9
c. 10
d. 3
e. 12
8) Which of the following statements are true?
a. There are $3 \mathrm{CH}_{3}$ groups
b. There are $4 \mathrm{sp}^{3}$ hybridized carbons
c. All carbons possess 120° bond angles
d. The ethers are capable of hydrogen bond donation
e. The compound has an ester
9) Which functional group is not present?
a. Ketone
b. Amine
c. Alcohol
d. Carboxylic acid
e. Amide
10) Which of the following species would not possess a net dipole moment vector?
a. ClF_{4}
b. ClF_{3}
c. ClF_{5}
d. ClF_{2}
e. All of the above
11) BCl_{3} possess no dipole moment, while PCl_{3} does. What is the 3 D geometry of PCl_{3} centered around P ?
a. Trigonal pyramid
b. Trigonal planar
c. T-shape
d. L-shape
e. Tetrahedral
12) CaO is less soluble than KCl . Which of the following statements is true describing the reasoning behind this observation? Refer to Coulomb's law
a. The force of attraction between CaO and KCl is the same because they are both neutral in charge
b. The force of attraction between Ca^{2+} and O^{2-} is much stronger than the force of attraction between K^{+}and Cl^{-}because of the larger charges
c. The distance between atoms in CaO is much shorter than KCl because Cl^{-}has more electrons
d. The distance between atoms in CaO is longer than KCl because Ca^{2+} radius is much larger than K^{+}
e. None of the above
13) $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ are both soluble salts, but $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is insoluble. Given 100 mL of a 0.200 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, what volume of $0.150 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ is required to precipitate Pb^{2+} as lead phosphate?
a. $\quad 44.5 \mathrm{~mL}$
b. 50.0 mL
c. 88.9 mL
d. 26.6 mL
e. 13.3 mL
14) Food first begins being digested by saliva, then upon swallowing reaches the stomach fluid. If the pH of saliva is 6.000 while the pH of the stomach is 3.500 , what is the change in hydronium concentration that the food experiences?
a. $\quad 3.152 \times 10^{-3} \mathrm{M}$
b. $3.883 \times 10^{-8} \mathrm{M}$
c. $3.883 \times 10^{-4} \mathrm{M}$
d. $3.152 \times 10^{-4} \mathrm{M}$
e. $3.883 \times 10^{-5} \mathrm{M}$
15) For the following system, how could the reaction be shifted to the left in order to decrease the concentration of $\mathrm{Cl}_{2(\mathrm{~g})}$? The forward reaction is endothermic

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

a. Decrease concentration of $\mathrm{SO}_{2(\mathrm{~g})}$
b. Decrease the temperature
c. Decrease pressure
d. Increase volume
e. None of the above
16) Which is true for the following forward redox reaction?

$$
2 \mathrm{ClO}_{3}^{-}+\mathrm{Mn}^{2+} \rightleftharpoons 2 \mathrm{ClO}_{2}+\mathrm{MnO}_{2}
$$

a. Mn^{2+} loses 2 electrons to become Mn^{4+}
b. $\mathrm{ClO}_{3}{ }^{-}$is the reducing agent
c. The oxidation state of Cl in ClO_{2} is higher than in $\mathrm{ClO}_{3}{ }^{-}$
d. The manganese undergoes reduction
e. None of the above
17) The pK_{a} for weak acid HF is 3.17. If you want to prepare a buffer solution that is pH 4.00 using HF and its conjugate base salt, NaF , what is the concentration ratio for $\left[\mathrm{F}^{-}\right] /[\mathrm{HF}]$ that you should use?
a. $\left[F^{-}\right] /[\mathrm{HF}]=0.14$
b. $\quad\left[\mathrm{F}^{-}\right] /[\mathrm{HF}]=6.76$
c. $\quad\left[\mathrm{F}^{-}\right] /[\mathrm{HF}]=5.0$
d. $\left[F^{-}\right] /[\mathrm{HF}]=0.78$
e. $\left[F^{-}\right] /[H F]=7.17$
18) For the following pairs of 0.5 M solutions, which will produce a buffer solution when mixed?
a. 100 mL of aqueous NaOH and 100 mL of aqueous HCl
b. 100 mL of aqueous $\mathrm{CH}_{3} \mathrm{COOH}$ and 200 mL of aqueous NaOH
c. 100 mL of aqueous $\mathrm{CH}_{3} \mathrm{COONa}$ and 100 mL of aqueous NaOH
d. 100 mL of aqueous NaCl and 100 mL of aqueous HCl
e. 100 mL of aqueous $\mathrm{CH}_{3} \mathrm{COOH}$ and 75 mL of $\mathrm{CH}_{3} \mathrm{COONa}$
19) Which is the following not true regarding intermolecular forces between I_{2} and Br_{2} ?
a. $\quad I_{2}$ is more polarizable
b. I_{2} has a higher boiling point
c. I_{2} possess a stronger permanent dipole than Br_{2}
d. Both possess London dispersion forces
e. All of the above are true
20) Which structure is not an isomer of $\mathrm{C}_{6} \mathrm{H}_{12}$?

1

2

3

4
a. 1
b. 2
c. 3
d. 4
e. All of the above are isomers of $\mathrm{C}_{6} \mathrm{H}_{12}$
21) In reality, many gases deviate from the ideal gas law. Strong intermolecular forces of a gas will cause gas molecules to interact with each other rather than the container, making the actual pressure of the gas lower than the calculated ideal. Which gas would have the largest deviation from its ideal pressure?
a. Ne
b. NH_{3}
c. Br_{2}
d. CH_{4}
e. Cl_{2}
22) The average atomic mass of nitrogen that is listed on the periodic table is 14.007 amu . There are two isotopes of $\mathrm{N} .{ }^{14} \mathrm{~N}=14.003 \mathrm{amu}$, and ${ }^{15} \mathrm{~N}=15.000 \mathrm{amu}$. What is the percent abundance of ${ }^{14} \mathrm{~N}$ to 3 decimal places?
a. 99.018%
b. 50%
c. 99.599%
d. 95.469%
e. 90.145%
23) Use the information in the table below. What is the $\mathrm{P}-\mathrm{Cl}$ bond energy PCl_{3} ?

Species	$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{PCl}_{3(\mathrm{~g})}$	-306.1
$\mathrm{P}_{(\mathrm{g})}$	314.5
$\mathrm{Cl}_{(\mathrm{g})}$	121.4

a. $\quad 328.3$
b. 264.1
c. 193.1
d. 102.1
e. 129.5
24) Rank the melting point of the following fatty acids from lowest to highest

1

2

3

4

a. $2<1<4<3$
b. $1<3<4<2$
c. $1<2<3<4$
d. $1<4<3<2$
e. $3<1<2<4$
25) If 4.50 g of oxalic acid, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$, is combusted under excess oxygen, 0.90 g of $\mathrm{H}_{2} \mathrm{O}$ is produced. How many grams of CO_{2} is produced?
a. 4.38 g
b. $\quad 1.80 \mathrm{~g}$
c. 2.19 g
d. 5.40 g
e. None of the above

